We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.
Bacterial replication origins move towards opposite ends of the cell during DNA segregation. We have identified a proline-rich polar protein, PopZ, required to anchor the separated Caulobacter crescentus chromosome origins at the cell poles, a function that is essential for maintaining chromosome organization and normal cell division. PopZ interacts directly with the ParB protein bound to specific DNA sequences near the replication origin. As the origin/ParB complex is being replicated and moved across the cell, PopZ accumulates at the cell pole and tethers the origin in place upon arrival. The polar accumulation of PopZ occurs by a diffusion/capture mechanism that requires the MreB cytoskeleton. High molecular weight oligomers of PopZ assemble in vitro into a filamentous network with trimer junctions, suggesting that the PopZ network and ParB-bound DNA interact in an adhesive complex, fixing the chromosome origin at the cell pole.
Structures of 70S ribosome complexes containing messenger RNA and transfer RNA (tRNA), or tRNA analogs, have been solved by x-ray crystallography at up to 7.8 angstrom resolution. Many details of the interactions between tRNA and the ribosome, and of the packing arrangements of ribosomal RNA (rRNA) helices in and between the ribosomal subunits, can be seen. Numerous contacts are made between the 30S subunit and the P-tRNA anticodon stem-loop; in contrast, the anticodon region of A-tRNA is much more exposed. A complex network of molecular interactions suggestive of a functional relay is centered around the long penultimate stem of 16S rRNA at the subunit interface, including interactions involving the "switch" helix and decoding site of 16S rRNA, and RNA bridges from the 50S subunit.
Dapper was isolated in a screen for proteins interacting with Dishevelled, a key factor in Wnt signaling. Dapper and Dishevelled colocalize intracellularly and form a complex with Axin, GSK-3, CKI, and beta-catenin. Overexpression of Dapper increases Axin and GSK-3 in this complex, resulting in decreased soluble beta-catenin and decreased activation of beta-catenin-responsive genes. Dapper also inhibits activation by Dishevelled of c-Jun N-terminal kinase (JNK), a component of beta-catenin-independent Frizzled signaling. Inhibition of Dapper activates both beta-catenin-responsive genes and an AP1-responsive promoter, demonstrating that Dapper is a general Dishevelled antagonist. Depletion of maternal Dapper RNA from Xenopus embryos results in loss of notochord and head structures, demonstrating that Dapper is required for normal vertebrate development.
Technical advances on several frontiers have expanded the applicability of existing methods in structural biology and helped close the resolution gaps between them. As a result, we are now poised to integrate structural information gathered at multiple levels of the biological hierarchy - from atoms to cells - into a common framework. The goal is a comprehensive description of the multitude of interactions between molecular entities, which in turn is a prerequisite for the discovery of general structural principles that underlie all cellular processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.