Lysophosphatidic acid (LPA) is a water-soluble phospholipid with hormone-like and growth-factor-like activities. LPA activates a putative G-protein-coupled receptor in responsive cells, but the natural source of exogenous LPA is unknown. Here we show that LPA is present in mammalian serum in an active form (bound to albumin) at concentrations of 1-5 microM, but is not detectable in platelet-poor plasma, suggesting that LPA is produced during blood clotting. We find that thrombin activation of platelets prelabelled with [32P]Pi results in the rapid release of newly formed [32P]LPA into the extracellular environment. We conclude that LPA is a novel platelet-derived lipid mediator that may play a role in inflammatory and proliferative responses to injury.
In severe or chronic asthma, there is an increase in airway smooth muscle cell (ASMC) mass as well as an increase in connective tissue proteins in the smooth muscle layer of airways. Transforming growth factor-beta (TGF-beta) exists in three isoforms in mammals and is a potent regulator of connective tissue protein synthesis. Using immunohistochemistry, we had previously demonstrated that ASMCs contain large quantities of TGF-beta1-3. In this study, we demonstrate that bovine ASMC-derived TGF-beta associates with the TGF-beta latency binding protein-1 (LTBP-1) expressed by the same cells. The TGF-beta associated with LTBP-1 localizes TGF-beta extracellularly. Furthermore, plasmin, a serine protease, regulates the secretion of a biologically active form of TGF-beta by ASMCs as well as the release of extracellular TGF-beta. The biologically active TGF-beta released by plasmin induces ASMCs to synthesize collagen I in an autocrine manner. The autocrine induction of collagen expression by ASMCs may contribute to the irreversible fibrosis and remodeling seen in the airways of some asthmatics.
Fibrosis around the smooth muscle of asthmatic airway walls leads to irreversible airway obstruction. Bronchial epithelial cells release granulocyte/macrophage colony-stimulating factor (GM-CSF) in asthmatics and are in close proximity to airway smooth muscle cells (ASMC). The findings in this study demonstrate that GM-CSF induces confluent, prolonged, serum-deprived cultures of ASMC to increase expression of collagen I and fibronectin. GM-CSF also induced ASMC to increase the expression of transforming growth factor (TGF)-beta receptors type I, II, and III (TbetaR-I, TbetaR-II, TbetaR-III), but had no detectable effect on the release of TGF-beta1 by the same ASMC. The presence of GM-CSF also induced the association of TGF-beta1 with TbetaR-III, which enhances binding of TGF-beta1 to TbetaR-II. The induction of TbetaRs was parallel to the increased induction of phosphorylated Smad2 (pSmad2) and connective tissue growth factor (CTGF), indicative of TGF-beta-mediated connective tissue synthesis. Dexamethasone decreased GM-CSF-induced TbetaR-I, TbetaR-II, TbetaR-III, pSmad2, CTGF, collagen I, and fibronectin. In conclusion, GM-CSF increases the responsiveness of ASMC to TGF-beta1-mediated connective tissue expression by induction of TbetaRs, which is inhibited by corticosteroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.