Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.
The proline-specific X-prolyl dipeptidyl aminopeptidase (PepX; EC 3.4.14.11) and the general aminopeptidase N (PepN; EC 3.4.11.2) from Lactobacillus helveticus ATCC 12046 were produced recombinantly in E. coli BL21(DE3) via bioreactor cultivation. The maximum enzymatic activity obtained for PepX was 800 µkatH-Ala-Pro-pNA L−1, which is approx. 195-fold higher than values published previously. To the best of our knowledge, PepN was expressed in E. coli at high levels for the first time. The PepN activity reached 1,000 µkatH-Ala-pNA L−1. After an automated chromatographic purification, both peptidases were biochemically and kinetically characterized in detail. Substrate inhibition of PepN and product inhibition of both PepX and PepN were discovered for the first time. An apo-enzyme of the Zn2+-dependent PepN was generated, which could be reactivated by several metal ions in the order of Co2+>Zn2+>Mn2+>Ca2+>Mg2+. PepX and PepN exhibited a clear synergistic effect in casein hydrolysis studies. Here, the relative degree of hydrolysis (rDH) was increased by approx. 132%. Due to the remarkable temperature stability at 50°C and the complementary substrate specificities of both peptidases, a future application in food protein hydrolysis might be possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.