Gene targeting in mice was used to investigate the unknown function of
Objectives Apolipoprotein E (apoE) exerts potent anti-inflammatory effects. We here investigated the effect of apoE on the functional phenotype of macrophages. Methods and Results Human apoE receptors VLDL-R or apoER2 were stably expressed in RAW264.7 mouse macrophages. In these cells apoE downregulated markers of the pro-inflammatory M1 phenotype (iNOS, IL-12, MIP-1α), but upregulated markers of the anti-inflammatory M2 phenotype (arginase-I, SOCS3, IL-1RA). In addition, M1 macrophage responses (migration, generation of reactive oxygen species, antibody-dependent cell cytotoxicity, phagocytosis) as well as poly(I:C)- and/or IFN-γ-induced production of pro-inflammatory cytokines, COX-2 expression, and activation of NF-κB, IκB and STAT1 were suppressed in VLDL-R- or apoER2-expressing cells. Conversely, the suppression of M2 phenotype and the enhanced response to poly(I:C) were observed in apoE-producing bone marrow macrophages derived from VLDL-R-deficient mice, but not wild type or LDL receptor-deficient mice. The modulatory effects of apoE on macrophage polarization were inhibited in apoE receptor-expressing RAW264.7 cells exposed to SB220025, a p38MAP kinase inhibitor, and PP1, a tyrosine kinase inhibitor. Accordingly, apoE induced tyrosine kinase-dependent activation of p38MAP kinase in VLDL-R- or apoER2-expressing macrophages. Under in vivo conditions, apoE−/− mice transplanted with apoE-producing wild-type bone marrow showed increased plasma IL-1RA levels and peritoneal macrophages of transplanted animals were shifted to the M2 phenotype (increased IL-1RA production and CD206 expression). Conclusion ApoE signaling via VLDL-R or apoER2 promotes macrophage conversion from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. This effect may represent a novel anti-inflammatory activity of apoE.
Lipid bilayer fusion is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) located on the vesicle membrane (v-SNAREs) and the target membrane (t-SNAREs). The assembled v-SNARE/t-SNARE complex consists of a bundle of four helices, of which one is supplied by the v-SNARE and the other three by the t-SNARE. For t-SNAREs on the plasma membrane, the protein syntaxin supplies one helix and a SNAP-25 protein contributes the other two. Although there are numerous homologues of syntaxin on intracellular membranes, there are only two SNAP-25-related proteins in yeast, Sec9 and Spo20, both of which are localized to the plasma membrane and function in secretion and sporulation, respectively. What replaces SNAP-25 in t-SNAREs of intracellular membranes? Here we show that an intracellular t-SNARE is built from a 'heavy chain' homologous to syntaxin and two separate non-syntaxin 'light chains'. SNAP-25 may thus be the exception rather than the rule, having been derived from genes that encoded separate light chains that fused during evolution to produce a single gene encoding one protein with two helices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.