Our data demonstrate that the goal of designing bumetanide prodrugs that specifically target the brain is feasible and that such drugs may resolve the problems associated with using bumetanide for treatment of neurological disorders.
The aim of this study was to develop a positron emission tomography (PET) tracer based on the dual P-glycoprotein (P-gp) breast cancer resistance protein (BCRP) inhibitor tariquidar (1) to study the interaction of 1 with P-gp and BCRP in the blood-brain barrier (BBB) in vivo. Odesmethyl-1 was synthesized and reacted with [ 11 C]methyl triflate to afford [ 11 C]-1. Small-animal PET imaging of [ 11 C]-1 was performed in naïve rats, before and after administration of unlabeled 1 (15 mg/kg, n=3) or the dual P-gp/BCRP inhibitor elacridar (5 mg/kg, n=2), as well as in wildtype, Mdr1a/b (−/−) , Bcrp1 (−/−) and Mdr1a/b (−/−) Bcrp1 (−/−) mice (n=3). In vitro autoradiography was performed with [ 11 C]-1 using brain sections of all 4 mouse types, with and without coincubation with unlabeled 1 or elacridar (1 μM). In PET experiments in rats, administration of unlabeled 1 or elacridar increased brain activity uptake by a factor of 3-4, whereas blood activity levels remained unchanged. In Mdr1a/b (−/−) , Bcrp1 (−/−) and Mdr1a/b (−/−) Bcrp1 (−/−) mice, brain-toblood ratios of activity at 25 min after tracer injection were 3.4, 1.8 and 14.5 times higher, respectively, as compared to wild-type animals. Autoradiography showed approximately 50% less [ 11 C]-1 binding in transporter knockout mice compared to wild-type mice and significant displacement by unlabeled elacridar in wild-type and Mdr1a/b (−/−) mouse brains. Our data suggest that [ 11 C]-1 interacts specifically with P-gp and BCRP in the BBB. However, further investigations are needed to assess if [ 11 C]-1 behaves in vivo as a transported or a non-transported inhibitor.
Elacridar (ELC) and tariquidar (TQD) are generally thought to be nontransported inhibitors of P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), but recent data indicate that they may also be substrates of these multidrug transporters (MDTs). The present study was designed to investigate potential transport of ELC and TQD by MDTs at the blood-brain barrier at tracer doses as used in positron emission tomography (PET) studies. We performed PET scans with carbon-11-labeled ELC and TQD before and after MDT inhibition in wild-type and transporterknockout mice as well as in in vitro transport assays in MDToverexpressing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.