Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.
In the fly optic lobe, $800 highly stereotypical columnar microcircuits are arranged retinotopically to process visual information. Differences in cellular composition and synaptic connectivity within functionally specialized columns remain largely unknown. Here, we describe the cellular and synaptic architecture in medulla columns located downstream of photoreceptors in the dorsal rim area (DRA), where linearly polarized skylight is detected for guiding orientation responses. We show that only in DRA medulla columns both R7 and R8 photoreceptors target to the bona fide R7 target layer where they form connections with previously uncharacterized, modality-specific Dm neurons: two morphologically distinct DRA-specific cell types (termed Dm-DRA1 and Dm-DRA2) stratify in separate sublayers and exclusively contact polarization-sensitive DRA inputs, while avoiding overlaps with color-sensitive Dm8 cells. Using the activity-dependent GRASP and trans-Tango techniques, we confirm that DRA R7 cells are synaptically connected to Dm-DRA1, whereas DRA R8 form synapses with Dm-DRA2. Finally, using live imaging of ingrowing pupal photoreceptor axons, we show that DRA R7 and R8 termini reach layer M6 sequentially, thus separating the establishment of different synaptic connectivity in time. We propose that a duplication of R7/Dm circuitry in DRA ommatidia serves as an ideal adaptation for detecting linearly polarized skylight using orthogonal e-vector analyzers.
In the fly optic lobe ~800 highly stereotypical columnar microcircuits are arranged retinotopically to process visual information. Differences in cellular composition and synaptic connectivity within functionally specialized columns remains largely unknown. Here we describe the cellular and synaptic architecture in medulla columns located downstream of photoreceptors in the 'dorsal rim area' (DRA), where linearly polarized skylight is detected for guiding orientation responses.
Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.
Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila’s abilities to use celestial cues for visually guided navigation and course correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.