For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought 1 . Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives 2,3 , including numerous extremophile species 4 . Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences 5 and required single-molecule realtime sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade 6 and a sunflowerspecific whole-genome duplication around 29 million years ago 7 . An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs 8,9 .As the only major crop domesticated in North America, with its sunlike inflorescence that inspired artists, the sunflower is both a social icon and a major research focus for scientists. In evolutionary biology, the Helianthus genus is a long-time model for hybrid speciation and adaptive introgression 10 . In plant science, the sunflower is a model for understanding solar tracking 11 and inflorescence development 12 .Despite this large interest, assembling its genome has been extremely difficult as it mainly consists of long and highly similar repeats. This complexity has challenged leading-edge assembly protocols for close to a decade 13 .To finally overcome this challenge, we generated a 102× sequencing coverage of the genome of the inbred line XRQ using 407 singlemolecule real-time (SMRT) cells on the PacBio RS II platform. Production of 32 million very long reads allowed us to generate a genome assembly that captures 3 gigabases (Gb) (80% of the estimated genome size) in 13,957 sequence contigs. Four high-density genetic maps were combined with a sequence-based physical map to build the sequences of the 17 pseudo-chromosomes that anchor 97% of the gene content (Fig.
Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals.
The advent of fully sequenced genomes opens the ground for the reconstruction of metabolic pathways on the basis of the identification of enzyme-coding genes. Here we describe PRIAM, a method for automated enzyme detection in a fully sequenced genome, based on the classification of enzymes in the ENZYME database. PRIAM relies on sets of position-specific scoring matrices ('profiles') automatically tailored for each ENZYME entry. Automatically generated logical rules define which of these profiles is required in order to infer the presence of the corresponding enzyme in an organism. As an example, PRIAM was applied to identify potential metabolic pathways from the complete genome of the nitrogen-fixing bacterium Sinorhizobium meliloti. The results of this automated method were compared with the original genome annotation and visualised on KEGG graphs in order to facilitate the interpretation of metabolic pathways and to highlight potentially missing enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.