Advancing inverted (p-i-n) perovskite solar cells (PSCs) is key to further enhance the power conversion efficiency (PCE) and stability of flexible and perovskite-based tandem photovoltaics. Yet, the presence of defects...
Monolithic all-perovskite tandem photovoltaics promise to combine low-cost and high-efficiency solar energy harvesting with the advantages of all-thin-film technologies. To date, laboratory-scale all-perovskite tandem solar cells have only been fabricated using non-scalable fabrication techniques. In response, this work reports on laser-scribed all-perovskite tandem modules processed exclusively with scalable fabrication methods (blade coating and vacuum deposition), demonstrating power conversion efficiencies up to 19.1% (aperture area, 12.25 cm2; geometric fill factor, 94.7%) and stable power output. Compared to the performance of our spin-coated reference tandem solar cells (efficiency, 23.5%; area, 0.1 cm2), our prototypes demonstrate substantial advances in the technological readiness of all-perovskite tandem photovoltaics. By means of electroluminescence imaging and laser-beam-induced current mapping, we demonstrate the homogeneous current collection in both subcells over the entire module area, which explains low losses (<5%rel) in open-circuit voltage and fill factor for our scalable modules.
Vacuum-based deposition of optoelectronic thin films has a long-standing history. However, in the field of perovskite-based photovoltaics, these techniques are still not as advanced as their solution-based counterparts. Although high-efficiency vacuum-based perovskite solar cells reaching power conversion efficiencies (PCEs) above 20% are reported, the number of studies on the underlying physical and chemical mechanism of the co-evaporation of lead iodide and methylammonium iodide is low. In this study, the impact of one of the most crucial process parameters in vacuum processes-the substrate material-is studied. It is shown that not only the morphology of the co-evaporated perovskite thin films is significantly influenced by the surface polarity of the substrate material, but also the incorporation of the organic compound into the perovskite framework. Based on these studies, a selection guide for suitable substrate materials for efficient co-evaporated perovskite thin films is derived. This selection guide points out that the organic vacuum-processable hole transport material 2,2″,7,7″-tet ra(N,N-di-p-tolyl)amino-9,9-spirobifluorene is an ideal candidate for the fabrication of efficient all-evaporated perovskite solar cells, demonstrating PCEs above 19%. Furthermore, building on the insights into the formation of the perovskite thin films on different substrate materials, a basic crystallization model for co-evaporated perovskite thin films is suggested.
Engineering of the interface between perovskite absorber thin films and charge transport layers has fueled the development of perovskite solar cells (PSCs) over the past decade. For p‐i‐n PSCs, the development and adoption of hole transport layers utilizing self‐assembled monolayers (SAM‐HTLs) based on carbazole functional groups with phosphonic acid anchoring groups has enabled almost lossless contacts, minimizing interfacial recombination to advance power conversion efficiency in single‐junction and tandem solar cells. However, so far these materials have been deposited exclusively via solution‐based methods. Here, for the first time, vacuum‐based evaporation of the most common carbazole‐based SAM‐HTLs (2PACz, MeO‐2PACz, and Me‐4PACz) is reported. X‐ray photoelectron spectroscopy and infrared spectroscopy demonstrate no observable chemical differences in the evaporated SAMs compared to solution‐processed counterparts. Consequently, the near lossless interfacial properties are either preserved or even slightly improved as demonstrated via photoluminescence measurements and an enhancement in open‐circuit voltage. Strikingly, applying evaporated SAM‐HTLs to complete PSCs demonstrates comparable performance to their solution‐processed counterparts. Furthermore, vacuum deposition is found to improve perovskite wetting and fabrication yield on previously non‐ideal materials (namely Me‐4PACz) and to display conformal and high‐quality coating of micrometer‐sized textured surfaces, improving the versatility of these materials without sacrificing their beneficial properties.
Monolithic two-terminal (2T) perovskite/CuInSe 2 (CIS) tandem solar cells (TSCs) combine the promise of an efficient tandem photovoltaic (PV) technology with the simplicity of an all-thin-film device architecture that is compatible with flexible and lightweight PV. In this work, we present the first-ever 2T perovskite/CIS TSC with a power conversion efficiency (PCE) approaching 25% (23.5% certified, area 0.5 cm 2 ). The relatively planar surface profile and narrow band gap (∼1.03 eV) of our CIS bottom cell allow us to exploit the optoelectronic properties and photostability of a low-Br-containing perovskite top cell as revealed by advanced characterization techniques. Current matching was attained by proper tuning of the thickness and bandgap of the perovskite, along with the optimization of an antireflective coating for improved light in-coupling. Our study sets the baseline for fabricating efficient perovskite/CIS TSCs, paving the way for future developments that might push the efficiencies to over 30%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.