The anterior insular cortex (AIC) and its unique spindle-shaped von Economo neuron (VEN) emerged within the last decade as having a potentially major role in self-awareness and social cognition in humans. Invasive examination of the VEN has been precluded so far by the assumption that this neuron occurs among primates exclusively in humans and great apes. Here, we demonstrate the presence of the VEN in the agranular anterior insula of the macaque monkey. The morphology, size, laminar distribution, and proportional distribution of the monkey VEN suggest that it is at least a primal anatomical homolog of the human VEN. This finding sheds new light on the phylogeny of the VEN and AIC. Most importantly, it offers new and much-needed opportunities to investigate the primal connections and physiology of a neuron that could be crucial for human self-awareness, social cognition, and related neuropsychiatric disorders.
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Travelling theta oscillations and sharp wave-associated ripples (SWRs) provide temporal structures to neural activity in the CA1 hippocampus. The contribution of rhythm-generating GABAergic interneurons to network timing across the septotemporal CA1 axis remains unknown. We recorded the spike-timing of identified parvalbumin (PV)-expressing basket, axo-axonic, oriens-lacunosum moleculare (O-LM) interneurons, and pyramidal cells in the intermediate CA1 (iCA1) of anesthetized rats in relation to simultaneously detected network oscillations in iCA1 and dorsal CA1 (dCA1). Distinct interneuron types were coupled differentially to SWR, and the majority of iCA1 SWR events occurred simultaneously with dCA1 SWR events. In contrast, iCA1 theta oscillations were shifted in time relative to dCA1 theta oscillations. During theta cycles, the highest firing of iCA1 axo-axonic cells was followed by PV-expressing basket cells and subsequently by O-LM together with pyramidal cells, similar to the firing sequence of dCA1 cell types reported previously. However, we observed that this temporal organization of cell types is shifted in time between dCA1 and iCA1, together with the respective shift in theta oscillations. We show that GABAergic activity can be synchronized during SWR but is shifted in time from dCA1 to iCA1 during theta oscillations, highlighting the flexible inhibitory control of excitatory activity across a brain structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.