We present a space-time Cut Finite Element Method (CutFEM) for the time-dependent Navier-Stokes equations involving two immiscible incompressible fluids with different viscosities, densities, and with surface tension. The numerical method is able to accurately capture the strong discontinuity in the pressure and the weak discontinuity in the velocity field across evolving interfaces without re-meshing processes or regularization of the problem. We combine the strategy proposed in [P. Hansbo, M. G. Larson, S. Zahedi, Appl. Numer. Math. 85 (2014), 90-114] for the Stokes equations with a stationary interface and the space-time strategy presented in [P. Hansbo, M. G. Larson, S. Zahedi, Comput. Methods Appl. Mech. Engrg. 307 (2016), . We also propose a strategy for computing high order approximations of the surface tension force by computing a stabilized mean curvature vector. The presented space-time CutFEM uses a fixed mesh but includes stabilization terms that control the condition number of the resulting system matrix independently of the position of the interface, ensure stability and a convenient implementation of the space-time method based on quadrature in time. Numerical experiments in two and three space dimensions show that the numerical method is able to accurately capture the discontinuities in the pressure and the velocity field across evolving interfaces without requiring the mesh to be conformed to the interface and with good stability properties.
We develop a family of cut finite element methods of different orders based on the discontinuous Galerkin framework, for hyperbolic conservation laws with stationary interfaces in both one and two space dimensions, and for moving interfaces in one space dimension. Interface conditions are imposed weakly and so that both conservation and stability are ensured. A CutFEM with discontinuous elements in space is developed and coupled to standard explicit time stepping schemes for linear advection problems and the acoustic wave problem with stationary interfaces. In the case of moving interfaces, we propose a space-time CutFEM based on discontinuous elements both in space and time for linear advection problems. We show that the proposed CutFEM are conservative and energy stable. For the stationary interface case an a priori error estimate is proven. Numerical computations in both one and two space dimensions support the analysis, and in addition demonstrate that the proposed methods have the expected accuracy.
We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs RT 0 ×P 0 , BDM 1 × P 0 , and RT 1 × P 1 . We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, pollutes the computed velocity field so the divergence-free property of the considered elements is lost. Therefore, we propose two corrections to the standard stabilization strategy; using macro-elements and new stabilization terms for the pressure. By decomposing the computational mesh into macroelements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is active only where needed. By modifying the standard stabilization terms for the pressure we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. Numerical experiments indicate that with the new stabilization terms the unfitted finite element discretization, for the given element pairs, results in 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative the computational mesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.