Magnets containing substantial quantities of rare earth elements are currently one of the most sought-after commodities because of their strategic importance. Recycling these rare earth magnets after their life span has been identified to be a unique approach for mitigating environmental issues that originate from mining and also for sustaining natural resources. The approach is hydrometallurgical, with leaching and precipitation followed by separation and recovery of neodymium (Nd), praseodymium (Pr) and dysprosium (Dy) in the form of rare earth fluorides (REF) as the final product. The methodology is specifically comprised of sulfuric acid (H2SO4) leaching and ammonium hydroxide (NH4OH) precipitation followed by reacting the filtrate with ammonium bifluoride (NH4F·HF) to yield the REF. Additional filtering also produces ammonium sulfate ((NH4)2SO4) as a byproduct fertilizer. Quantitative and qualitative evaluations by means of XRD, ICP and TGA-DSC to determine decomposition of ammonium jarosite, which is an impurity in the recovery process were performed. Additionally, conditional and response variables were used in a surface-response model to optimize REF production from end-of-life magnets. A REF recovery of 56.2% with a REF purity of 62.4% was found to be optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.