For tumor therapy with light ions and for experimental aspects in particle radiobiology the relative biological effectiveness (RBE) is an important quantity to describe the increased effectiveness of particle radiation. By establishing and analysing a database of ion and photon cell survival data, some remarkable properties of RBE-related quantities were observed. The database consists of 855 in vitro cell survival experiments after ion and photon irradiation. The experiments comprise curves obtained in different labs, using different ion species, different irradiation modalities, the whole range of accessible energies and linear energy transfers (LETs) and various cell types. Each survival curve has been parameterized using the linear-quadratic (LQ) model. The photon parameters, α and β, appear to be slightly anti-correlated, which might point toward an underlying biological mechanism. The RBE values derived from the survival curves support the known dependence of RBE on LET, on particle species and dose. A positive correlation of RBE with the ratio α/β of the photon LQ parameters is found at low doses, which unexpectedly changes to a negative correlation at high doses. Furthermore, we investigated the course of the β coefficient of the LQ model with increasing LET, finding typically a slight initial increase and a final falloff to zero. The observed fluctuations in RBE values of comparable experiments resemble overall RBE uncertainties, which is of relevance for treatment planning. The database can also be used for extensive testing of RBE models. We thus compare simulations with the local effect model to achieve this goal.
Solid tumours often present regions with severe oxygen deprivation (hypoxia), which
are resistant to both chemotherapy and radiotherapy. Increased radiosensitivity as a
function of the oxygen concentration is well described for X-rays. It has also been
demonstrated that radioresistance in anoxia is reduced using high-LET radiation
rather than conventional X-rays. However, the dependence of the oxygen enhancement
ratio (OER) on radiation quality in the regions of intermediate oxygen
concentrations, those normally found in tumours, had never been measured and
biophysical models were based on extrapolations. Here we present a complete survival
dataset of mammalian cells exposed to different ions in oxygen concentration ranging
from normoxia (21%) to anoxia (0%). The data were used to generate a model of the
dependence of the OER on oxygen concentration and particle energy. The model was
implemented in the ion beam treatment planning system to prescribe uniform cell
killing across volumes with heterogeneous radiosensitivity. The adaptive treatment
plans have been validated in two different accelerator facilities, using a
biological phantom where cells can be irradiated simultaneously at three different
oxygen concentrations. We thus realized a hypoxia-adapted treatment plan, which will
be used for painting by voxel of hypoxic tumours visualized by functional
imaging.
The new version of the model allows a more mechanistic description of the biological effects of ion radiation. The full simulation is a prerequisite for tests of the validity of the approach at high doses, which are of particular interest for application in hypofractionation studies.
The roles of the HIV1 protein Vpr in virus replication and pathogenesis remain unclear. Expression of Vpr in dividing cells causes cell cycle arrest in G 2 . Vpr also facilitates low titer infection of terminally differentiated macrophages, enhances transcription, promotes apoptosis, and targets cellular uracil N-glycosylase for degradation. Using co-immunoprecipitation and tandem mass spectroscopy, we found that HIV1 Vpr engages a DDB1-and cullin4A-containing ubiquitin-ligase complex through VprBP/DCAF1. HIV2 Vpr has two Vpr-like proteins, Vpr and Vpx, which cause G 2 arrest and facilitate macrophage infection, respectively. HIV2 Vpr, but not Vpx, engages the same set of proteins. We further demonstrate that the interaction between Vpr and the ubiquitin-ligase components as well as further assembly of the ubiquitin-ligase are necessary for Vpr-mediated G 2 arrest. Our data support a model in which Vpr engages the ubiquitin ligase to deplete a cellular factor that is required for cell cycle progression into mitosis. Vpr, thus, functions like the HIV1 proteins Vif and Vpu to usurp cellular ubiquitin ligases for viral functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.