We report using a Raman fiber laser (RFL) based on a multimode graded-index fiber as a novel method for beam combination of two continuous wave pump beams. Due to stimulated Raman scattering, the RFL generates a Stokes beam which can be up to 300% brighter than the pump beams. Up to 5.8 W of Stokes power is generated with an optical conversion efficiency of 56%.
Applying a dc electric field across a fused silica sample at elevated temperatures followed by cooling the sample with the field applied (thermal poling) leads to a second-order nonlinearity that has been linked to the formation of a space-charge region in bulk glass. The first microscopic information on the extent of the space-charge region and its behavior with poling time is reported using secondary ion mass spectrometry to monitor the distribution of charged impurities. Lithium and sodium ions are observed to form depletion regions. Potassium and sodium ions as well as a hydrogenated species appear to be injected from the surface. The extent of the space-charge region evolves approximately logarithmically with poling time well after the nonlinearity as measured by second-harmonic generation has been established. The evolution of the space charge region can be qualitatively understood by an ion-exchange model that allows interaction of two ionic carriers with vastly different mobilities.
We etched thermally poled fused-silica coverslips in 49% HF for 30 s transverse to the poling direction to reveal structural details of the nonlinear region. A peaked ridge below the anode surface, corresponding to a slower etch rate than that of the bulk SiO(2) , was located approximately 5 microm below the anode surface for a poling time of 30 s. The ridge moved deeper into the glass logarithmically with poling time. This trend is qualitatively consistent with a recent model for the formation of the space-charge region that includes injection of hydrogen ions at the anode surface.
We report using a Raman fiber laser (RFL) based on a multimode graded-index fiber as a novel method for beam combination of two continuous wave pump beams. Due to stimulated Raman scattering, the RFL generates a Stokes beam which can be up to 300% brighter than the pump beams. Up to 5.8 W of Stokes power is generated with an optical conversion efficiency of 56%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.