Because of recent advances in precision engineering that allow controlled grinding infeed rates as small as several nanometers per grinding wheel revolution, it is possible to grind brittle materials so that the predominant material-removal mechanism is plastic-flow and not fracture. This process is known as ductile-regime grinding. When brittle materials are ground through a process of plastic deformation, surface finishes similar to those achieved in polishing or lapping are produced. Unlike polishing or lapping, however, grinding is a deterministic process, permitting finely controlled contour accuracy and complex shapes. In this paper, the development of a research apparatus capable of ductile-regime grinding is described. Furthermore, an analytical and experimental investigation of the infeed rates necessary for ductile-regime grinding of brittle materials is presented. Finally, a model is proposed, relating the grinding infeed rate necessary for ductile material-removal with the properties of the brittle workpiece material.
The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well defined phase screen. We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a significant FOV advantage. While this result is well known in the astronomy community, our goal here is to recast it specifically for the optical microscopy community.
We present a wide-field fluorescence microscopy add-on that provides a fast, light-efficient extended depth-of-field (EDOF) using a deformable mirror with an update rate of 20 kHz. Out-of-focus contributions in the raw EDOF images are suppressed with a deconvolution algorithm derived directly from the microscope 3D optical transfer function. Demonstrations of the benefits of EDOF microscopy are shown with GCaMP-labeled mouse brain tissue.
We demonstrate steady-state focusing of coherent light through dynamic scattering media. The phase of an incident beam is controlled both spatially and temporally using a reflective, 1020-segment MEMS spatial light modulator, using a coordinate descent optimization technique. We achieve focal intensity enhancement of between 5 and 400 for dynamic media with speckle decorrelation time constants ranging from 0.4 seconds to 20 seconds. We show that this optimization approach combined with a fast spatial light modulator enables focusing through dynamic media. The capacity to enhance focal intensity despite transmission through dynamic scattering media could enable advancement in biological microscopy and imaging through turbid environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.