We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJÁmol −1. Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two-and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of −57.5 kJÁmol −1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJÁmol −1 off the best theoretical prediction of −55.9 kJÁmol −1. We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJÁmol −1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs.
Ionic liquids (ILs) such as choline dihydrogen phosphate exhibit an extraordinary solubilizing ability for proteins such as cytochrome C when mixed with 20 wt % water. Most widely used imidazolium-based ionic liquids coupled with dihydrogen phosphate do not exhibit the same solubilizing properties, suggesting that a multifunctional cation such as choline might play a key role in enhancing these properties of ionic liquid mixtures with water. In this theoretical work, we compare intermolecular interactions between the water molecule and ionic liquid ions in two ion-paired clusters of choline- and 1-butyl-3-methyl-imidazolium-based ionic liquids coupled with acetate, dihydrogen phosphate, and mesylate. Gibbs free energy (GFE) of solvation of water in these ionic liquids was calculated. Incorporation of a water molecule into ionic liquid clusters was accompanied by negative GFEs of solvation in both types of cations. These results were in good agreement with previously reported experimental GFEs of solvation of water in ILs. Compared to imidazolium-based clusters, strong interionic interactions of choline ionic liquids resulted in more negative GFEs due to their smaller deformation upon the addition of a water molecule, with dihydrogen phosphate and mesylate predicting the lowest GFEs of −30.1 and −43.5 kJ/mol−1, respectively. Lower GFEs of solvation of water in choline-based clusters were also accompanied with smaller entropic penalties, suggesting that water easily incorporates itself into the existing ionic network. Analysis of the intramolecular bonds within the water molecule showed that the choline hydroxyl group donates electron density to the neighboring water molecule, leading to additional polarization. The predicted infrared spectra of clusters of ionic liquids with water showed a pronounced red shift due to strongly polarized O–H bonds, in excellent agreement with the experimentally measured infrared spectra of ionic liquid mixtures with water. Increased polarization of water in choline-based ionic liquids undoubtedly creates more effective solvents for stabilizing biological molecules such as proteins.
Minimal understanding of the formation mechanism and structure of polydopamine (pDA) and its natural analogues, eumelanin impedes the practical application of these versatile polymers and limits our knowledge of the...
Mussel-inspired polycatecholamine coatings and films have proven to be versatile materials for surface modification. However, the progress of chemically modified coatings with tailored properties has been slow due to the lack of definitive evidence of their polymeric structure. Polycatecholamines form aggregates during polymerization, and their formation mechanism has been a subject of debate owing to their insolubility in traditional molecular solvents. Exploiting the capability of ionic liquids (ILs) to exhibit strong electrostatic interactions, herein, the first solution-phase polymerization approach is reported to achieve polymerization of four catecholamines -dopamine (DA), norepinephrine (NE), L-3,4-dihydroxyphenylalanine (L-DOPA), and adrenaline (AD). Kinetic control over the polymerization process in the solution phase enabled it to follow the process with 1 H NMR spectroscopy, revealing the formation of structural features of resulting complex heterogeneous and soluble polymers. The polymers are both covalent and associative in nature. Solution phase polymerization prevented the formation of large aggregates in the solution, thus facilitating the formation of coatings that are ultra-smooth and have root mean square roughness of the order of sub-nm to nm scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.