The polymerization mechanism of photochemically mediated Cu-based atom-transfer radical polymerization (ATRP) was investigated using both experimental and kinetic modeling techniques. There are several distinct pathways that can lead to photochemical (re)generation of Cu(I) activator species or formation of radicals. These (re)generation pathways include direct photochemical reduction of the Cu(II) complexes by excess free amine moieties and unimolecular reduction of the Cu(II) complex, similar to activators regenerated by electron-transfer (ARGET) ATRP processes. Another pathway is photochemical radical generation either directly from the alkyl halide, ligand, or via interaction of ligand with either monomer or with alkyl halides. These photochemical radical generation processes are similar to initiators for continuous activator regeneration (ICAR) ATRP processes. A series of model experiments, ATRP reactions, and kinetic simulations were performed to evaluate the contribution of these reactions to the photochemical ATRP process. The results of these studies indicate that the dominant radical (re)generation reaction is the photochemical reduction of Cu(II) complexes by free amines moieties (from amine containing ligands). The unimolecular reduction of the Cu(II) deactivator complex is not significant, however, there is some contribution from ICAR ATRP reactions involving the interaction of alkyl halides and ligand, ligand with monomer, and the photochemical cleavage of the alkyl halide. Therefore, the mechanism of photochemically mediated ATRP is consistent with a photochemical ARGET ATRP reaction dominating the radical (re)generation.
polymerizing styrene in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radicals. [10] Later, Wayland et al. used a cobalt(II) porphyrin complex to reversibly trap radical species during the polymerization of acrylate monomers, which showed living features: i) linear increase of polymer MW with monomer conversion, and ii) narrow MWD. [11] These techniques set the basis for the development of nitroxide-mediated polymerization (NMP) [12,13] and organometallic mediated radical polymerization (OMRP). [14][15][16] Within the past three decades, controlled radical polymerization (CRP) has been established as a new field in polymer chemistry, in which exceptional control was achieved over polymer architectures, thus enabling the preparation of commercially relevant polymer-based materials for advanced applications. Following IUPAC recommendations, CRP should be termed as reversible deactivation radical polymerization (RDRP). [17] Besides the aforementioned NMP and OMRP, the most affirmed RDRPs are atom transfer radical polymerization (ATRP) [18][19][20] and reversible additionfragmentation chain transfer (RAFT) polymerization. [21] RDRP ensures comparable degree of control as living ionic polymerization, while retaining the versatility and the scope of conventional radical polymerization. The fraction of terminated chains in RDRP is small, typically below a few mol%. Polymers and copolymers prepared by RDRP methods can have defined topologies (stars, brushes, networks, combs), compositions (block, gradient, graft, alternate) and chain-end functionalities. [22] This review will focus on ATRP, with particular attention to the design and application of progressively more active and selective copper-based catalysts, and the development of novel, more benign initiation systems. The correlation between the structure of Cu complexes and their catalytic activity will be discussed in detail, also taking into account the effect of solvent and, when present, surfactants and other additives. Mechanisms of Reversible Deactivation Radical Polymerization ProcessesThe core of all RDRP systems is the increase of chain lifetime by reversibly deactivating the propagating radical species, thus forming dormant species that can be subsequently reactivated. As opposed to conventional RP in which the 25 Years of ATRP Approaching 25 years since its invention, atom transfer radical polymerization (ATRP) is established as a powerful technique to prepare precisely defined polymeric materials. This perspective focuses on the relation between structure and activity of ATRP catalysts, and the consequent choice of the initiating system, which are paramount aspects to well-controlled polymerizations. The ATRP mechanism is discussed, including the effect of kinetic and thermodynamic parameters and side reactions affecting the catalyst. The coordination chemistry and activity of copper complexes used in ATRP are reviewed in chronological order, while emphasizing the structure-activity correlation. ATRP-initiating systems are described, from ...
The tris[(4-dimethylaminopyridyl)methyl]amine (TPMA) as a ligand for copper-catalyzed atom transfer radical polymerization (ATRP) is reported. In solution, the [Cu(TPMA)Br] complex shows fluxionality by variable-temperature NMR, indicating rapid ligand exchange. In the solid state, the [Cu(TPMA)Br][Br] complex exhibits a slightly distorted trigonal bipyramidal geometry (τ = 0.89). The UV-vis spectrum of [Cu(TPMA)Br] salts is similar to those of other pyridine-based ATRP catalysts. Electrochemical studies of [Cu(TPMA)] and [Cu(TPMA)Br] showed highly negative redox potentials (E = -302 and -554 mV vs SCE, respectively), suggesting unprecedented ATRP catalytic activity. Cyclic voltammetry (CV) in the presence of methyl 2-bromopropionate (MBrP; acrylate mimic) was used to determine activation rate constant k = 1.1 × 10 M s, confirming the extremely high catalyst reactivity. In the presence of the more active ethyl α-bromoisobutyrate (EBiB; methacrylate mimic), total catalysis was observed and an activation rate constant k = 7.2 × 10 M s was calculated with values of K ≈ 1. ATRP of methyl acrylate showed a well-controlled polymerization using as little as 10 ppm of catalyst relative to monomer, while side reactions such as Cu-catalyzed radical termination (CRT) could be suppressed due to the low concentration of L/Cu at a steady state.
Synthesis, characterization, electrochemical studies, and ATRP activity of a series of novel copper(I and II) complexes with TPMA-based ligands containing 4-methoxy-3,5-dimethyl-substituted pyridine arms were reported. In the solid state, Cu(I)(TPMA*(1))Br, Cu(I)(TPMA*(2))Br, and Cu(I)(TPMA*(3))Br complexes were found to be distorted tetrahedral in geometry and contained coordinated bromide anions. Pseudo-coordination of the aliphatic nitrogen atom to the copper(I) center was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br complexes, whereas pyridine arm dissociation occurred in Cu(I)(TPMA*(1))Br. All copper(I) complexes with substituted TPMA ligands exhibited a high degree of fluxionality in solution. At low temperature, Cu(I)(TPMA*(1))Br was found to be symmetrical and monomeric, while dissociation of either unsubstituted pyridine and/or 4-methoxy-3,5-dimethyl-substituted pyridine arms was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br. On the other hand, the geometry of the copper(II) complexes in the solid state deviated from ideal trigonal bipyramidal, as confirmed by a decrease in τ values ([Cu(II)(TPMA*(1))Br][Br] (τ = 0.92) > [Cu(II)(TPMA*(3))Br][Br] (τ = 0.77) > [Cu(II)(TPMA*(2))Br][Br] (τ = 0.72)). Furthermore, cyclic voltammetry studies indicated a nearly stepwise decrease (ΔE ≈ 60 mV) of E1/2 values relative to SCE (TPMA (-240 mV) > TPMA*(1) (-310 mV) > TPMA*(2) (-360 mV) > TPMA*(3) (-420 mV)) on going from [Cu(II)(TPMA)Br][Br] to [Cu(II)(TPMA*(3))Br][Br], confirming that the presence of electron-donating groups in the 4 (-OMe) and 3,5 (-Me) positions of the pyridine rings in TPMA increases the reducing ability of the corresponding copper(I) complexes. This increase was mostly the result of a stronger influence of substituted TPMA ligands toward stabilization of the copper(II) oxidation state (log β(I) = 13.4 ± 0.2, log β(II) = 19.3 (TPMA*(1)), 20.5 (TPMA*(2)), and 21.5 (TPMA*(3))). Lastly, ARGET ATRP kinetic studies show that with more reducing catalysts an induction period is observed. This was attributed to slow regeneration of Cu(I) species from the corresponding Cu(II).
Elemental silver was used as a reducing agent in the atom transfer radical polymerization (ATRP) of acrylates. Silver wire, in conjunction with a CuBr2/TPMA catalyst, enabled the controlled, rapid preparation of polyacrylates with dispersity values down to Đ = 1.03. The silver wire in these reactions was reused several times in sequential reactions without a decline in performance, and the amount of copper catalyst used was reduced to 10 ppm without a large decrease in control. A poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) diblock copolymer was synthesized with a molecular weight of 91 400 and Đ = 1.04, demonstrating good retention of chain-end functionality and a high degree of livingness in this ATRP system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.