The effect of a synthetic curcumin analogue (salicylcurcumin) on fish lipid peroxidation was investigated in both in vitro and in vivo conditions using a teleost model Anabas testudineus (Bloch). Curcumin analogue inhibited the formation of lipid peroxidation products and thiobarbituric acid reactive substances (TBARS) content at the three concentrations (10(-2) M, 10(-3) M and 10(-4) M) in vitro. TBARS content was reduced by 80% in the liver and 68% in brain by the higher concentration of salicylcurcumin. For in vivo study, salicylcurcumin (0.5%) was supplemented along with the basal feed for a period of 60 days. It produced a 60% reduction in liver TBARS content. The antioxidant enzyme superoxide dismutase (SOD) was stimulated, whereas catalase (CAT) and glutathione peroxidase (GPx) were inhibited. Glutathione (GSH) was reduced and glutathione reductase (GR) unchanged. Even though there was an increase in SOD activity, the CAT and GPx did not increase accordingly, maybe due to the direct scavenging of H(2)O(2) by salicylcurcumin. The protein content also increased in the curcumin-fed animals, indicating a positive growth-promoting effect. Therefore, it would be beneficial to supplement salicylcurcumin along with the aquaculture feed in order to help the fish to cope with adverse conditions in the environment. This would increase the survival rate, disease resistance and ultimately the growth rate.
The present study evaluated the effect of five different curcuminoids, CURI, CURII, CURIII, a mixture of the three and a synthetic, curcumin-boron-oxalic acid complex, on Anabas testudineus hepatocyte lipid peroxidation after 30-60 min of incubation. The results showed that curcumin had a protective role as a strong antioxidant in teleosts. All the curcuminoids decreased the peroxidation products formed, with or without stimulating the antioxidant enzyme pathway. This suggests a direct reactive oxygen-species scavenging ability of curcuminoids. Their antioxidant effects appear to be time and dose-dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.