The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.
SummarySeveral Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.
Background: It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress).
This study presents the effects of methyl jasmonate (MeJA) on growth, N uptake, N partitioning, and N storage in taproots of non-nodulated alfalfa (cv. Lodi). When compared to untreated plants, addition of 100 micro M MeJA to the nutrient solution for 14 days reduced total growth and modified biomass partitioning between shoots and roots in favour of taproots and lateral roots. MeJA decreased N uptake (after 7 days) and increased N partitioning towards roots after 14 days. This preferential N partitioning to roots was accompanied by increased N storage in taproots as soluble proteins. Compared to total soluble proteins, VSP accumulation occurred earlier (7 days), and was greater (2-fold increase) in plants treated with 100 micro M MeJA. Steady-state transcript levels for two VSPs (32 and 57 kDa) also increased markedly (about 4-fold) in roots of plants treated with 100 micro M MeJA. This suggests that MeJA could act directly (transcriptional regulation) or indirectly (via the changes of N partitioning among alfalfa organs) on N storage as soluble proteins and in particular, VSPs. Because the deduced amino acid sequence of the 32 kDa VSP clone reveals high homology with Class III chitinases, we propose that the 32 kDa VSP may have a role in pathogen defense, in addition to its function as a storage protein.
SUMMARYA group of selenium (Se)-hyperaccumulating species belonging to the genus Astragalus are known for their capacity to accumulate up to 0.6% of their foliar dry weight as Se, with most of this Se being in the form of Semethylselenocysteine (MeSeCys). Here, we report the isolation and molecular characterization of the gene that encodes a putative selenocysteine methyltransferase (SMT) enzyme from the non-accumulator Astragalus drummondii and biochemically compare it with an authentic SMT enzyme from the Se-hyperaccumulator Astragalus bisulcatus, a related species that lives within the same native habitat. The non-accumulator enzyme (AdSMT) shows a high degree of homology with the accumulator enzyme (AbSMT) but lacks the selenocysteine methyltransferase activity in vitro, explaining why little or no detectable levels of MeSeCys accumulation are observed in the non-accumulator plant. The insertion of mutations on the coding region of the non-accumulator AdSMT enzyme to better resemble enzymes that originate from Se accumulator species results in increased selenocysteine methyltransferase activity, but these mutations were not sufficient to fully gain the activity observed in the AbSMT accumulator enzyme. We demonstrate that SMT is localized predominantly within the chloroplast in Astragalus, the principal site of Se assimilation in plants. By using a site-directed mutagenesis approach, we show that an Ala to Thr amino acid mutation at the predicted active site of AbSMT results in a new enzymatic capacity to methylate homocysteine. The mutated AbSMT enzyme exhibited a sixfold higher capacity to methylate selenocysteine, thereby establishing the evolutionary relationship of SMT and homocysteine methyltransferase enzymes in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.