A numerical method for calculating the mass transfer coefficient in fibrous media is presented. First, pressure driven flow was modelled using the Lattice Boltzmann Method. The advection-diffusion equation was solved for convective-reacting porous media flow, and the method is contrasted with experimental methods such as the limiting current diffusion technique, for its ability to determine and simulate mass transfer systems that are operating at low Reynolds number flows. A series of simulations were performed on three materials; specifically, commercially available carbon felts, electrospun carbon fibers and electrospun carbon fibers with anisotropy introduced to the microstructure. Simulations were performed in each principal direction (x,y,z) for each material in order to determine the effects of anisotropy on the mass transfer coefficient. In addition, the simulations spanned multiple Reynolds and Péclet numbers, to fully represent highly advective and highly diffusive systems. The resulting mass transfer coefficients were compared with values predicted by common correlations and a good agreement was found at high Reynolds numbers, but less so at lower Reynolds number typical of cell operation, reinforcing the utility of the numerical approach. Dimensionless mass transfer correlations were determined for each material and each direction in terms of the Sherwood number. These correlations were analyzed with respect to each materials' permeability tensor. It was found that as the permeability of the system increases, the expected mass transfer coefficient decreases. Two general mass transfer correlations are presented, one correlation for isotropic fibrous media and the other for through-plane flow in planar fibrous materials such as electrospun media and carbon paper. The correlations are Sh = 0.879 Re 0.402 Sc 0.390 and Sh = 0.906 Re 0.432 Sc 0.432 respectively.
The electrode drying process is a crucial step in the manufacturing of lithium-ion batteries and can significantly affect the performance of an electrode once stacked in a cell. High drying rates may induce binder migration, which is largely governed by the temperature. Additionally, elevated drying rates will result in a heterogeneous distribution of the soluble and dispersed binder throughout the electrode, potentially accumulating at the surface. The optimized drying rate during the electrode manufacturing process will promote balanced homogeneous binder distribution throughout the electrode film; however, there is a need to develop more informative in situ metrologies to better understand the dynamics of the drying process. Here, ultrasound acoustic-based techniques were developed as an in situ tool to study the electrode drying process using NMC622-based cathodes and graphite-based anodes. The drying dynamic evolution for cathodes dried at 40 and 60 °C and anodes dried at 60 °C were investigated, with the attenuation of the reflective acoustic signals used to indicate the evolution of the physical properties of the electrode-coating film. The drying-induced acoustic signal shifts were discussed critically and correlated to the reported three-stage drying mechanism, offering a new mode for investigating the dynamic drying process. Ultrasound acoustic-based measurements have been successfully shown to be a novel in situ metrology to acquire dynamic drying profiles of lithium-ion battery electrodes. The findings would potentially fulfil the research gaps between acquiring dynamic data continuously for a drying mechanism study and the existing research metrology, as most of the published drying mechanism research studies are based on simulated drying processes. It shows great potential for further development and understanding of the drying process to achieve a more controllable electrode manufacturing process.
Lithium-sulfur (Li-S) batteries are promising next-generation rechargeable energy storage systems due to their high energy density and use of abundant and inexpensive materials. However, rapid self-discharge and poor cycle stability due to the solubility of intermediate polysulfide conversion products have slowed their commercialization. Herein, we provide a detailed account of the multiphasic reactions occurring during self-discharge of a Li-S battery held at various degrees of discharge (DOD) through both simulation and experiment. For the first time, self-discharge of a full Li-S battery is simulated using a 1D model to describe reactions at both the anode and cathode. The model accurately describes experimentally derived results obtained over the longest durations of self-discharge studied to date (140 h). This validated model was used to follow the reversible and irreversible capacity loss caused by shuttling and precipitation of insoluble Li2S2 and Li2S as a function of DOD. While the most rapid self-discharge is observed at low DOD, this also leads to the smallest irreversible loss. The results suggest that resting a Li-S battery near 2.1 V minimizes both reversible and irreversible losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.