We extend time-domain imaging in acoustic metamaterials to gigahertz frequencies. Using a sample consisting of a regular array of ∼1 μm diameter silica microspheres forming a two-dimensional triangular lattice on a substrate, we implement an ultrafast technique to probe surface acoustic wave propagation inside the metamaterial area and incident on the metamaterial from a region containing no microspheres, which reveals the acoustic metamaterial dispersion, the presence of band gaps and the acoustic transmission properties of the interface. A theoretical model of this locally resonant metamaterial based on normal and shear-rotational resonances of the spheres fits the data well. Using this model, we show analytically how the sphere elastic coupling parameters influence the gap widths.
Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.
The Walloon Coal Measure (WCM) in the Surat Basin in Australia consists of coal-rich mire and a fine-grained meandering fluvial system. The main gas producing targets of WCM are numerous thin coal plies within six coal members with frequent pinching outs, splitting and merging. The geology is stratigraphically complex making correlations of individual coal plies difficult. Consequently, previous geological studies have been mostly based on coal members instead of individual coal plies resulting in inadequate description of the heterogeneity of the coal deposit. To remedy this situation, we proposed a workflow using high-resolution sequence stratigraphy to build an isochronic stratigraphy framework of sublayers and coal plies by utilizing all available data from cores and logs. The key methodology was to identify single fining-upwards cycles with coal, clay or siltstone at the top and sandstone at the base. Then similarity analysis on the cycles was used to identify aggradation, progradation or retrogradation of fluvial facies sequence between adjacent wells. Log density cutoff was used to identify coal, shaly coal, shale, sandstone and siltstone from the whole Walloon fluvial system. Reservoir parameters including gas, ash, moisture content, density, and permeability versus depth were correlated taking into consideration depth shift, regional core data and lithology in different members. All of the above were integrated into a ply-based geomodel which was used to identify highly concentrated, overlapping, continuous plies that are potential sweet pots for field development. Our intent is to provide analogue information and understanding for the coal seam distribution in the green field development of the Surat Basin. This methodology was applied to WCM to perform division and correlation of 20 sub-layers and 125 single plies with thickness ranging from 0.3–1.4 m. Coal distribution area versus thickness relationship was generated to analyze the variogram range used for some key properties, especially density and net-to-gross, and to investigate the impact of coal continuity on well spacing. Five micro-facies in fluvial system were used to describe the distribution of coal properties, impact of coal architecture and heterogeneity. Several potential sweet spots for field development were identified. With proper upscaling, this high-resolution ply-based model can be used in reservoir simulation to forecast production and calculate estimated ultimate recovery (EUR). This methodology has been applied to three coalbed methane (CBM) fields in the Surat Basin in Australia. It is novel in applying high-resolution sequence stratigraphy used in geomodel building of convention oil and gas reservoirs to CBM characterization. It has resulted in a better understanding of the complex depositional character of the WCM and consequently more accurate determination of potential sweet spots, production forecast and EUR calculation.
Arrow Energy has engaged in drilling production Coal Bed Methane (CBM) wells in the Bowen Basin. As part of its field development strategy, varied styles of horizontal wells have been planned and executed along the coal targets of Moranbah Coal Measures (MCM). Some of the recently drilled multi-branch lateral and horizontal wells experienced different drilling challenges and production performance. Potential geomechanical issues such as borehole conditions and fines/solid production are directly related to wellbore stability during and post drilling. As part of Arrow subsurface modeling strategy, the project has embarked a detailed Geomechanics study in Moranbah Gas field. The main objectives were aiming to: (i) optimize the mud weight that is required to stabilize the borehole, (ii) understand how specific coal targets respond to the induced stress concentration around the wellbore during drilling and, (iii) capture the vertical and lateral mechanical heterogeneity within specific coal seams. This paper focuses on practical solutions to model the borehole stability, in particular of the uncertainties in the rock strength modeling and coal heterogeneity. This innovative workflow coupled with geostatistical approach of rock strength and insitu stress with depth-of-damage is first of its kind in CBM environment. Borehole collapse depth-of-damage (DoD) concept is then used to assess risk associated to the volume of yielded rock as a percent of borehole size. The higher the percentage of DoD, the higher the risk of producing excessive cavings. It provides more confidence in optimizing drilling mud weight for CBM horizontal wells by allowing a more scientifically-sound and practical solution to address rock failure mechanisms associated with borehole instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.