We study the elastic deformation of poly(dimethylsiloxane) (PDMS) microchannels under imposed flow rates and the effect of this deformation on the laminar flow profile and pressure distribution within the channels. Deformation is demonstrated to be an important consideration in low aspect ratio (height to width) channels and the effect becomes increasingly pronounced for very shallow channels. Bulging channels are imaged under varying flow conditions by confocal microscopy. The deformation is related to the pressure and is thus non-uniform throughout the channel, with tapering occuring along the stream-wise axis. The measured pressure drop is monitored as a function of the imposed flow rate. For a given pressure drop, the corresponding flow rate in a deforming channel is found to be several times higher than expected in a nondeforming channel. The experimental results are supported by scaling analysis and computational fluid dynamics simulations coupled to materials deformation models.
In cancer research and personalized medicine, new tissue culture models are needed to better predict the response of patients to therapies. With a concern for the small volume of tissue typically obtained through a biopsy, we describe a method to reproducibly section live tumor tissue to submillimeter sizes. These micro-dissected tissues (MDTs) share with spheroids the advantages of being easily manipulated on-chip and kept alive for periods extending over one week, while being biologically relevant for numerous assays. At dimensions below ~420 μm in diameter, as suggested by a simple metabolite transport model and confirmed experimentally, continuous perfusion is not required to keep samples alive, considerably simplifying the technical challenges. For the long-term culture of MDTs, we describe a simple microfluidic platform that can reliably trap samples in a low shear stress environment. We report the analysis of MDT viability for eight different types of tissues (four mouse xenografts derived from human cancer cell lines, three from ovarian and prostate cancer patients, and one from a patient with benign prostatic hyperplasia) analyzed by both confocal microscopy and flow cytometry over an 8-day incubation period. Finally, we provide a proof of principle for chemosensitivity testing of human tissue from a cancer patient performed using the described MDT chip method. This technology has the potential to improve treatment success rates by identifying potential responders earlier during the course of treatment and providing opportunities for direct drug testing on patient tissues in early drug development stages.
The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows, however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the center of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable – i.e. “floating” – concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.