Abstract. Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla 1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 µm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for aCorrespondence to: U. Schumann (ulrich.schumann@dlr.de) 1 Also known as Eyjafjallajökull or Eyjafjöll volcano, http://www.britannica.com/EBchecked/topic/1683937/ Eyjafjallajokull-volcano particle density of 2.6 g cm −3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m −3 . The Falcon flew in ash clouds up to about 0.8 mg m −3 for a few minutes and in an ash cloud with approximately 0.2 mg m −3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO 2 increases and O 3 decreases. To first order, ash concentration and SO 2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO 2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m −3 .Published by Copernicus Publications on behalf of the European Geosciences Union. U. Schumann et al.: Airborne observations of the Eyjafjalla volcano ash cloud over EuropeThe large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 µm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kg s −1 . The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO 2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of v...
Airborne measurements of Lidar backscatter, aerosol concentrations (particle diameters of 4 nm to 50 μm), trace gas mixing ratios (SO<sub>2</sub>, CO, O<sub>3</sub>, H<sub>2</sub>O), single particle properties, and meteorological parameters have been performed in volcanic ash plumes with the Falcon aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). A series of 17 flights was performed over Europe between Southern Germany and Iceland during the eruption period of the Eyjafjalla<sup>1</sup> volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with Lidar directly over the volcano and up to a distance of 2700 km downwind. Lidar and in-situ measurements covered plume ages of 7 h to 120 h. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentration was evaluated for a material density of 2.6 g cm<sup>−3</sup> and for either weakly or moderately absorbing coarse mode particles (refractive index 1.59+0<i>i</i> or 1.59+0.004<i>i</i>). In the absorbing case, the ash concentration is about a factor of four larger than in the non-absorbing limit. Because of sedimentation constraints, the smaller results are the more realistic ones for aged plumes. The Falcon flew in ash clouds up to about 1 mg m<sup>−3</sup> for a few minutes and in an ash cloud with more than 0.2 mg m<sup>−3</sup> mean-concentration for about one hour without engine damages. In fresh plumes, the SO<sub>2</sub> concentration was correlated with the ash mass concentration. Typically, 0.5 mg m<sup>−3</sup> ash concentration was related to about 100 nmol mol<sup>−31</sup> SO<sub>2</sub> mixing ratio and 70 nmol mol<sup>−1</sup> CO mixing ratio increases for this volcano period. In aged plumes, layers with enhanced coarse mode particle concentration but without SO<sub>2</sub> enhancements occurred. To first order, ash concentration and SO<sub>2</sub> mixing ratio in the plumes decreased by a factor of two within less than a day. The ash plumes were often visible as faint dark layers even for concentrations below 0.1 mg m<sup>−3</sup>. The ozone concentrations and the humidity inside the plumes were often reduced compared to ambient values. The large abundance of volatile Aitken mode particles suggests nucleation of sulfuric acid droplets. Ammonium sulfate particles were also found on the impactors. The effective diameters decreased from about 5 μm in the fresh plume to about 1 μm for plume ...
The exact time-dependent three-dimensional Navier-Stokes and temperature equations are integrated numerically to simulate stably stratified homogeneous turbulent shear flows at moderate Reynolds numbers whose horizontal mean velocity and mean temperature have uniform vertical gradients. The method uses shear-periodic boundary conditions and a combination of finite-difference and pseudospectral approximations. The gradient Richardson number Ri is varied between 0 and 1. The simulations start from isotropic Gaussian fields for velocity and temperature both having the same variances.The simulations represent approximately the conditions of the experiment by Komori et al. (1983) who studied stably stratified flows in a water channel (molecular Prandtl number Pr = 5). In these flows internal gravity waves build up, superposed by hot cells leading to a persistent counter-gradient heat-flux (CGHF) in the vertical direction, i.e. heat is transported from lower-temperature to higher-temperature regions. Further, simulations with Pr = 0.7 for air have been carried out in order to investigate the influence of the molecular Prandtl number. In these cases, no persistent CGHF occurred. This confirms our general conclusion that the counter-gradient heat flux develops for strongly stable flows (Ri ≈ 0.5–1.0) at sufficiently large Prandtl numbers (Pr = 5). The flux is carried by hot ascending, as well as cold descending turbulent cells which form at places where the highest positive and negative temperature fluctuations initially existed. Buoyancy forces suppress vertical motions so that the cells degenerate to two-dimensional fossil turbulence. The counter-gradient heat flux acts to enforce a quasi-static equilibrium between potential and kinetic energy.Previously derived turbulence closure models for the pressure-strain and pressure-temperature gradients in the equations for the Reynolds stress and turbulent heat flux are tested for moderate-Reynolds-number flows with strongly stable stratification (Ri = 1). These models overestimate the turbulent interactions and underestimate the buoyancy contributions. The dissipative timescale ratio for stably stratified turbulence is a strong function of the Richardson number and is inversely proportional to the molecular Prandtl number of the fluid.
A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.