Many professionals, like journalists, writers, or consultants, need to acquire information from various sources, make sense of this unstructured evidence, structure their observations, and finally create and deliver their product, such as a report or a presentation. In formative interviews, we found that tools allowing structuring of observations are often disconnected from the corresponding evidence. Therefore, we designed a sensemaking environment with a flexible observation graph that visually ties together evidence in unstructured documents with the user’s structured knowledge. This is achieved through bi-directional deep links between highlighted document portions and nodes in the observation graph. In a controlled study, we compared users’ sensemaking strategies using either the observation graph or a simple text editor on a large display. Results show that the observation graph represents a holistic, compact representation of users’ observations, which can be linked to unstructured evidence on demand. In contrast, users taking textual notes required much more display space to spatially organize source documents containing unstructured evidence. This implies that spatial organization is a powerful strategy to structure observations even if the available space is limited.
Filtering data is an essential process in a drill-down analysis of large data sets. Filtering can be necessary for several reasons. The main objective for filters is to uncover the relevant subsets of a dataset. Another, equally relevant goal is to reduce a dataset to dimensions to which either visualization or algorithmic analysis techniques scale. However, with multiple filters applied and possibly even logically combined, it becomes difficult for users to judge the effects of a filter chain. In this paper we present a simple, yet effective way to interactively visualize a sequence of filters and logical combinations of these. Such a visualized filter-pipeline allows analysts to easily judge the effect of every single filter and also their combination on the data set under investigation and therefore, leads to a faster and more efficient workflow.We also present an implementation of the proposed technique in an information visualization framework for the life sciences. The technique, however, could be employed in many other information visualization contexts as well.
Content on computer screens is often inaccessible to users because it is hidden, e.g., occluded by other windows, outside the viewport, or overlooked. In search tasks, the efficient retrieval of sought content is important. Current software, however, only provides limited support to visualize hidden occurrences and rarely supports search synchronization crossing application boundaries. To remedy this situation, we introduce two novel visualization methods to guide users to hidden content. Our first method generates awareness for occluded or out-of-viewport content using see-through visualization. For content that is either outside the screen's viewport or for data sources not opened at all, our second method shows off-screen indicators and an on-demand smart preview. To reduce the chances of overlooking content, we use visual links, i.e., visible edges, to connect the visible content or the visible representations of the hidden content. We show the validity of our methods in a user study, which demonstrates that our technique enables a faster localization of hidden content compared to traditional search functionality and thereby assists users in information retrieval tasks.
Figure 1: The tiled display in our visualization laboratory is build from 24 monitors (50" diameter, 1920x1080 resolution.) ABSTRACTInexpensive displays make large, tiled displays attractive for visual analysis and collaborative investigation. Especially in multi-user environments, the increased space allows to better organize the findings and results and, therefore, helps to improve collaboration. One important requirement is that all users can navigate seamlessly on the whole display space, while employing the standard software they are familiar with. In this paper, we present a seamless desktop infrastructure for distributed cognition and collaboration. Our infrastructure only uses standard hardware and software. By choosing a minimally invasive, web-centric approach, we can integrate existing web applications and visual analysis software with little or no effort into our system. We can even leverage existing synchronization mechanisms built into many web applications today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.