Oil souring occurs when H2S is generated in oil reservoirs. This not only leads to operational risks and health hazards but also increases the cost of refining crude oil. Sulfate-reducing microorganisms are considered to be the main source of the H2S that leads to oil souring. Substrate competition between nitrate-reducing and sulfate-reducing microorganisms makes biosouring mitigation via the addition of nitrate salts a viable strategy. This study explores the shift in microbial community across different phases of biosouring and mitigation. Anaerobic sand-filled columns wetted with seawater and/or oil were used to initiate the processes of sulfidogenesis, followed by mitigation with nitrate, rebound sulfidogenesis, and rebound control phases (via nitrate and low salinity treatment). Shifts in microbial community structure and function were observed across different phases of seawater and oil setups. Marine bacterial taxa (Marinobacter, Marinobacterium, Thalassolituus, Alteromonas, and Cycloclasticus) were found to be the initial responders to the application of nitrate during mitigation of sulfidogenesis in both seawater- and oil- wetted columns. Autotrophic groups (Sulfurimonas and Desulfatibacillum) were found to be higher in seawater-wetted columns compared to oil-wetted columns, suggesting the potential for autotrophic volatile fatty acid (VFA) production in oil-field aquifers when seawater is introduced. Results indicate that fermentative (such as Bacteroidetes) and oil-degrading bacteria (such as Desulfobacula toluolica) play an important role in generating electron donors in the system, which may sustain biosouring and nitrate reduction. Persistence of certain microorganisms (Desulfobacula) across different phases was observed, which may be due to a shift in metabolic lifestyle of the microorganisms across phases, or zonation based on nutrient availability in the columns. Overall results suggest mitigation strategies for biosouring can be improved by monitoring VFA concentrations and microbial community dynamics in the oil reservoirs during secondary recovery of oil.
Microbial communities control many biogeochemical processes. Many of these processes are impractical or expensive to measure directly.
Sulfate-reducing bacteria (SRB) are one of the main sources of biogenic H 2 S generation in oil reservoirs. Excess H 2 S production in these systems leads to oil biosouring, which causes operational risks, health hazards and can increase the cost of refining crude oil. Nitrate salts are often added to the system to suppress sulfidogenesis. Because SRB populations can persist in biofilms even after nitrate treatment, identifying shifts in the sessile community is crucial for successful mitigation. However, sampling the sessile community is hampered by its inaccessibility. Here we use the results of a long-term (148 days) ex situ experiment to identify particular sessile community members from observations of the sample waste stream. Microbial community structure was determined for 731 samples across twenty bioreactors using 16S rRNA gene sequencing. By associating microbial community structure with specific steps in the mitigation process, we could distinguish between taxa associated with H 2 S production and mitigation. After initiation of nitrate treatment, certain SRB populations increased in the planktonic community during critical time points, indicating the dissociation of SRBs from the biofilm. Predicted relative abundances of the dissimilatory sulfate reduction pathway also increased during the critical time points. Here, by analyzing the planktonic community structure, we describe a general method that uses high-throughput amplicon sequencing, metabolic inferences, and cell abundance data to identify successful biofilm mitigation. We anticipate that our approach is also applicable to other systems where biofilms must be mitigated but cannot be easily sampled. Importance Microbial biofilms are commonly present in many industrial processes and can negatively impact performance and safety. Within the oil industry, subterranean biofilms cause biosouring with implications for oil quality, cost, occupational health, and the environment. Because these biofilms cannot be directly sampled, methods are needed to indirectly assess the success of mitigation measures. This study demonstrates how the planktonic microbial community can be used to assess the dissociation of SRB-containing biofilms. We found that an increase in the abundance of a specific SRB population in the effluent after nitrate treatment can be used as a potential indicator for the successful mitigation of biofilm-forming SRBs. Moreover, a method for determining critical time points for detecting potential indicators is suggested. This study expands our knowledge in improving mitigation strategies for biosouring and could have broader implications in other systems where biofilms lead to adverse consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.