Floral nectar is the most important reward for pollinators and an integral component of the pollination syndrome. Nectar research has mainly focused on sugars or amino acids, whereas more comprehensive studies on the nectar composition of closely related plant species with different pollination types are rather limited. Nectar composition as well as concentrations of sugars, amino acids, inorganic ions, and organic acids were analyzed for 147 species of Bromeliaceae. This plant family shows a high diversity in terms of floral morphology, flowering time, and predominant pollination types (trochilophilous, trochilophilous/entomophilous, psychophilous, sphingophilous, chiropterophilous). Based on the analyses, we examined the relationship between nectar traits and pollination type in this family. Nectar of all analyzed species contained high amounts of sugars with different proportions of glucose, fructose, and sucrose. The total concentrations of amino acids, inorganic cations, and anions, or organic acids were much lower. The analyses revealed that the sugar composition, the concentrations of inorganic cations and anions as well as the concentration of malate in nectar of bat-pollinated species differed significantly from nectar of species with other pollination types. Flowers of bat-pollinated species contained a higher volume of nectar, which results in a total of about 25-fold higher amounts of sugar in bat-pollinated species than in insect-pollinated species. This difference was even higher for amino acids, inorganic anions and cations, and organic acids (between 50 and 100-fold). In general, bat-pollinated plant species invest large amounts of organic and inorganic compounds for their pollinators. Furthermore, statistical analyses reveal that the characteristics of nectar in Bromeliaceae are more strongly determined by the pollinator type rather than by taxonomic groups or phylogenetic relations. However, a considerable part of the variance cannot be explained by either of the variables, which means that additional factors must be responsible for the differences in the nectar composition.
• Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism. • We investigated the influence of drought, different temperatures and light-dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined. • Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose-to-hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period. • Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant-pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
Floral nectar contains mainly sugars as well as smaller amounts of amino acids and further compounds. The nectar composition varies between different plant species and it is related to the pollination type of the plant. In addition to this, other factors can influence the composition. Nectar is produced in and secreted from nectaries. A few models exist to explain the origin of nectar for dicotyl plant species, a complete elucidation of the processes, however, has not yet been achieved. This is particularly true for monocots or plant species with CAM photosynthesis. To get closer to such an elucidation, nectar, nectaries, and leaves of 36 bromeliad species were analyzed for sugars, starch, amino acids, and inorganic ions. The species studied include different photosynthesis types (CAM/C3), different pollination types (trochilophilous/chiropterophilous), or different live forms. The main sugars in nectar and nectaries were glucose, fructose, and sucrose, the total sugar concentration was about twofold higher in nectar than in nectaries, which suggests that sugars are actively transported from the nectaries into the nectar. The composition of amino acids in nectar is already determined in the nectaries, but the concentration is much lower in nectar than in nectaries, which suggests selective retention of amino acids during nectar secretion. The same applies to inorganic ions. Statistical analyses showed that the photosynthesis type and the pollination type can explain more data variation in nectar than in nectaries and leaves. Furthermore, the pollinator type has a stronger influence on the nectar or nectary composition than the photosynthesis type. Trochilophilous C3 plants showed significant correlations between the nitrate concentration in leaves and the amino acid concentration in nectaries and nectar. It can be assumed that the more nitrate is taken up, the more amino acids are synthesized in leaves and transported to the nectaries and nectar. However, chiropterophilous C3 plants show no such correlation, which means that the secretion of amino acids into the nectar is regulated by further factors. The results help understand the physiological properties that influence nectaries and nectar as well as the manner of metabolite and ion secretion from nectaries to nectar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.