We describe an experimental setup and a currently running experiment for evaluating how physical interactions over time and between individuals affect the spread of epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by participants at The University of Auckland (UoA) City Campus in New Zealand. The app spreads multiple virtual safe virus strands via Bluetooth depending on the physical proximity of the subjects. The evolution of the virtual epidemics is recorded as they spread through the population. The data is presented as a real-time (and historical) dashboard. A simulation model is applied to calibrate strand parameters. Participants’ locations are not recorded, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. The 2021 experimental data is available as an open-source anonymized dataset, and once the experiment is complete, the remaining data will be made available. This paper outlines the experimental setup, software, subject-recruitment practices, ethical considerations, and dataset description. The paper also highlights current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The experiment was initially planned in the New Zealand environment, expected to be free of COVID and lockdowns after 2020. However, a COVID Delta strain lockdown shuffled the cards and the experiment is currently extended into 2022.
We describe an experimental setup and a currently running experiment for evaluating how physical interactions over time and between individuals affect the spread of epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by participants at The University of Auckland (UoA) City Campus in New Zealand. The app spreads multiple virtual safe virus strands via Bluetooth depending on the social and physical proximity of the subjects. The evolution of the virtual epidemics is recorded as they spread through the population. The data is presented as a real-time (and historical) dashboard. A simulation model is applied to calibrate strand parameters. Participants' locations are not recorded, but participants are rewarded based on the duration of participation within a geofenced area, and aggregate participation numbers serve as part of the data. Once the experiment is complete, the data will be made available as an open-source anonymized dataset. This paper outlines the experimental setup, software, subject-recruitment practices, ethical considerations, and dataset description. The paper also highlights current experimental results in view of the lockdown that started in New Zealand at 23:59 on August 17, 2021. The experiment was initially planned in the New Zealand environment, expected to be free of COVID and lockdowns after 2020. However, a COVID Delta strain lockdown shuffled the cards and the experiment is currently extended into 2022.
Mathematical models often aim to describe a complicated mechanism in a cohesive and simple manner. However, reaching perfect balance between being simple enough or overly simplistic is a challenging task. Frequently, game-theoretic models have an underlying assumption that players, whenever they choose to execute a specific action, do so perfectly. In fact, it is rare that action execution perfectly coincides with intentions of individuals, giving rise to behavioural mistakes. The concept of incompetence of players was suggested to address this issue in game-theoretic settings. Under the assumption of incompetence, players have non-zero probabilities of executing a different strategy from the one they chose, leading to stochastic outcomes of the interactions. In this article, we survey results related to the concept of incompetence in classic as well as evolutionary game theory and provide several new results. We also suggest future extensions of the model and argue why it is important to take into account behavioural mistakes when analysing interactions among players in both economic and biological settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.