Light-driven sodium pumps actively transport small cations across cellular membranes 1 .They are used by microbes to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. While resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved 2,3 , it is unclear how structural alterations over time allow sodium translocation against a concentration gradient. Using the Swiss X-ray Free Electron Laser 4 , we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. Highresolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data in combination with quantum chemical calculations indicate transient binding of a sodium ion close to the retinal within one millisecond. In the last structural intermediate at 20 ms after activation, we identified a potential second sodium binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I–II–III2–IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.