Pleiotropy refers to a single genetic locus that affects more than one phenotypic trait. Pleiotropic effects of genetic loci are thought to play an important role in evolution, reflecting functional and developmental relationships among phenotypes. In a previous study, we examined pleiotropic effects displayed by quantitative trait loci (QTLs) on murine mandibular morphology in relation to mandibular structure and function. In replicating most of our previous QTLs and increasing our sample size, this study strengthens and extends our earlier results. As in our previous study, we find that QTL effects tend to be restricted to developmentally or functionally related traits. In addition, we examine patterns of differential dominance for pleiotropic QTL effects. Differential dominance occurs when dominance patterns for a single locus vary among traits. We find that multivariate overdominance is a common and substantial phenomenon, and may potentially provide an explanation for the persistence of heterozygosity in natural populations.
Genetic variation in response to high-fat diets is important in understanding the recent secular trends that have led to increases in obesity and type 2 diabetes. The examination of quantitative trait loci (QTLs) for both obesity-and diabetes-related traits and their responses to a high-fat diet can be effectively addressed in mouse model systems, including LGXSM recombinant inbred (RI) mouse strains. A wide range of obesity-and diabetes-related traits were measured in animals from 16 RI strains with 8 animals of each sex fed a high-or low-fat diet from each strain. Marker associations were measured at 506 microsatellite markers spread throughout the mouse genome using a nested ANOVA. Locations with significant effects on the traits themselves and/or trait dietary responses were identified after correction for multiple comparisons by limiting the false detection rate. Nonsyntenic associations of marker genotypes were common at QTL locations so that the significant results were limited to loci still significant in multiple QTL models. We discovered 91 QTLs at 39 locations. Many of these locations (n ؍ 31) also showed genetic effects on dietary response, typically because the loci produced significantly larger effects on the high-fat diet. Fat depot weights, leptin levels, and body weight at necropsy tended to map to the same locations and were responsible for a majority of the dietary response QTLs. Basal glucose levels and the response to glucose challenge mapped together in locations distinct from those affecting obesity. These QTL locations form a panel for further research and fine mapping of loci affecting obesity-and diabetes-related traits and their responses to high-fat feeding. Diabetes 53: 3328 -3336, 2004 T he prevalence of obesity and its correlates, such as type 2 diabetes, has increased greatly over the last 20 years (1). There has also been a concomitant change in the age of onset for type 2 diabetes, with increasing diagnoses of this disease in children, adolescents, and young adults (2). These secular changes in obesity and diabetes are not due to genetic changes in populations (3), rather they are due to environmental changes in nutrition and activity over time. Even so, there is genetic variation in humans in the response to dietary and activity factors. Some individuals respond strongly to an obesogenic environment by becoming obese, while other individuals remain lean when challenged by the same environment (4). These variations in response to environmental stimuli are, in part, due to genetic variations between people.Study of differential response to dietary factors in human populations can be challenging because of the difficulty in controlling or accurately recording diet over an extended period of time. Animal studies of the genetic basis for differential response to dietary factors can play an important role in attempts to understand the genetics involved in recent increases in obesity and type 2 diabetes. We have used the cross of inbred mouse strains LG/J and SM/J over the past y...
Although the current obesity epidemic is of environmental origin, there is substantial genetic variation in individual response to an obesogenic environment. In this study, we perform a genome-wide scan for quantitative trait loci (QTLs) affecting obesity per se, or an obese response to a high-fat diet in mice from the LG/J by SM/J Advanced Intercross (AI) Line (Wustl:LG,SM-G16). A total of 1,002 animals from 78 F16 full sibships were weaned at 3 weeks of age and half of each litter placed on high- and low-fat diets. Animals remained on the diet until 20 weeks of age when they were necropsied and the weights of the reproductive, kidney, mesenteric, and inguinal fat depots were recorded. Effects on these phenotypes, along with total fat depot weight and carcass weight at necropsy, were mapped across the genome using 1,402 autosomal single-nucleotide polymorphism (SNP) markers. Haplotypes were reconstructed and additive, dominance, and imprinting genotype scores were derived every 1 cM along the F16 map. Analysis was performed using a mixed model with additive, dominance, and imprinting genotype scores, their interactions with sex, diet, and with sex-by-diet as fixed effects and with family and its interaction with sex, diet, and sex-by-diet as random effects. We discovered 95 trait-specific QTLs mapping to 40 locations. Most QTLs had additive effects with dominance and imprinting effects occurring at two-thirds of the loci. Nearly every locus interacted with sex and/ or diet in important ways demonstrating that gene effects are primarily context dependent, changing depending on sex and/or diet.
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different for different traits. This study maps relationship quantitative trait loci (QTLs), specifically QTLs that affect the relationship between individual mandibular traits and mandible length, across the genome in an F2 intercross of the LG/J and SM/J inbred mouse strains (N = 1045). We discovered 23 relationship QTLs scattered throughout the genome. All mandibular traits were involved in one or more relationship QTL. When multiple traits were affected at a relationship QTL, the traits tended to come from a developmentally restricted region of the mandible, either the muscular processes or the alveolus. About one-third of the relationship QTLs correspond to previously located trait QTLs affecting the same traits. These results comprise examples of genetic variation necessary for an evolutionary response to selection on the range of pleiotropic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.