Prolonged microgravity exposure during long-duration spaceflight (LDSF) produces unusual physiologic and pathologic neuroophthalmic findings in astronauts. These microgravity associated findings collectively define the "Spaceflight Associated Neuroocular Syndrome" (SANS). We compare and contrast prior published work on SANS by the National Aeronautics and Space Administration's (NASA) Space Medicine Operations Division with retrospective and prospective studies from other research groups. In this manuscript, we update and review the clinical manifestations of SANS including: unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and focal areas of ischemic retina (i.e., cotton wool spots). We also discuss the knowledge gaps for in-flight and terrestrial human research including potential countermeasures for future study. We recommend that NASA and its research partners continue to study SANS in preparation for future longer duration manned space missions.npj Microgravity (2020) 6:7 ; https://doi.
The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.
IMPORTANCEDuring long-duration spaceflights, nearly all astronauts exhibit some change in ocular structure within the spectrum of spaceflight-associated neuro-ocular syndrome.OBJECTIVE To quantitatively determine in a prospective study whether changes in ocular structures hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome occur during 6-month missions on board the International Space Station (ISS).
DESIGN, SETTING, AND PARTICIPANTSThe Ocular Health ISS Study of astronauts is a longitudinal prospective cohort study that uses objective quantitative imaging modalities. The present cohort study investigated the ocular structure of 11 astronauts before, during, and after a 6-month mission on board the ISS.
MAIN OUTCOMES AND MEASURESChanges in ocular structure (peripapillary edema, axial length, anterior chamber depth, and refraction) hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome during 6-month missions on board the ISS were assessed. Statistical analyses were conducted from August 2018 to January 2019.RESULTS Before launch, the 11 astronauts were a mean (SD) age of 45 (5) years, a mean (SD) height of 1.76 (0.05) m, and a mean (SD) weight of 75.3 (7.1) kg. Six astronauts did not have prior spaceflight experience, 3 had completed short-duration missions on board the Space Shuttle, and 2 had previous long-duration spaceflight missions on board the ISS. Their mean (SD) duration on board the ISS in the present study was 170 (19) days. Optic nerve head rim tissue and peripapillary choroidal thickness increased from preflight values during early spaceflight, with maximal change typically near the end of the mission (mean change in optic nerve head rim tissue thickness on flight day 150: 35.7 μm; 95% CI, 28.5-42.9 μm; P < .001; mean choroidal thickness change on flight day 150: 43 μm; 95% CI, 35-46 μm; P < .001). The mean postflight axial length of the eye decreased by 0.08 mm (95% CI, 0.10-0.07 mm; P < .001) compared with preflight measures, and this change persisted through the last examination (1 year after spaceflight: 0.05 mm; 95% CI, 0.07-0.03 mm; P < .001).CONCLUSIONS AND RELEVANCE This study found that spaceflight-associated peripapillary optic disc edema and choroid thickening were observed bilaterally and occurred in both sexes. In addition, this study documented substantial peripapillary choroid thickening during spaceflight, which has never been reported in a prospective study cohort population and which may be a contributing factor in spaceflight-associated neuro-ocular syndrome. Data collection on spaceflight missions longer than 6 months will help determine whether the duration of the mission is associated with exacerbating these observed changes in ocular structure or visual function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.