The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high-and ultra-high fields. Acrossvendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B 1 requirements of the adiabatic inversion pulses and maximum B 1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B 1 limit of 15 μT by taking advantage of gradientmodulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B 0 shimming and voxel-based B 1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B 1 of 15 μT based on localization efficiency, contamination error and ripple artifacts of the Dinesh K Deelchand and Adam Berrington share equal authorship
High angular resolution diffusion imaging (HARDI) permits the computation of water molecule displacement probabilities over the sphere. This probability is often referred to as the orientation distribution function (ODF). In this paper we present a novel model for representing this diffusion ODF namely, a mixture of von Mises-Fisher (vMF) distributions. Our model is compact in that it requires very few parameters to represent complicated ODF geometries which occur specifically in the presence of heterogeneous nerve fiber orientations. We present a Riemannian geometric framework for computing intrinsic distances (in closed-form) and for performing interpolation between ODFs represented by vMF mixtures. We also present closed-form equations for entropy and variance based anisotropy measures that are then computed and illustrated for real HARDI data from a rat brain.
Purpose-In diffusion-weighted MRI studies of neural tissue, the classical model assumes the statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, there have been numerous reports of signal decays that are not monoexponential, particularly in the white matter. Theory-We modeled diffusion in neural tissue from the perspective of the continuous time random walk. The characteristic diffusion decay is represented by the Mittag-Leffler function, which relaxes a priori assumptions about the governing statistics. We then used entropy as a measure of the anomalous features for the characteristic function. Methods-Diffusion-weighted MRI experiments were performed on a fixed rat brain using an imaging spectrometer at 17.6 T with b-values arrayed up to 25,000 s/mm 2. Additionally, we examined the impact of varying either the gradient strength, q, or mixing time, Δ, on the observed diffusion dynamics. Results-In white and gray matter regions, the Mittag-Leffler and entropy parameters demonstrated new information regarding subdiffusion and produced different image contrast from that of the classical diffusion coefficient. The choice of weighting on q and Δ produced different image contrast within the regions of interest. Conclusion-We propose these parameters have the potential as biomarkers for morphology in neural tissue.
The first spatially localized NMR spectra of osmolytes and metabolites from single isolated neurons have been obtained using a combination of high magnetic field strengths and NMR radio frequency (RF) microcoils. The proton spectra display peaks at high concentrations (100 -300 mM) assigned to betaine and choline, and other metabolite resonances including lactate at lower concentrations in the order of 10s of millimoles. The volumes examined were approximately 10 nl, over two orders of magnitude less than previously possible. In these initial experiments; the cells were unperfused and the signal intensities of the osmolytes decrease with time, a phenomenon consistent with cell swelling. This work demonstrates the technical feasibility of NMR spectroscopy of single cells, further broadening the scope of NMR spectroscopy of living tissues from application to entire living organisms (man and animal models) and isolated tissues (perfused organs and cultured assemblies of cells) and now to single cells. Magn Reson Med 44:19 -22, 2000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.