This paper models components of the return distribution, which are assumed to be directed by a latent news process. The conditional variance of returns is a combination of jumps and smoothly changing components. A heterogeneous Poisson process with a time‐varying conditional intensity parameter governs the likelihood of jumps. Unlike typical jump models with stochastic volatility, previous realizations of both jump and normal innovations can feed back asymmetrically into expected volatility. This model improves forecasts of volatility, particularly after large changes in stock returns. We provide empirical evidence of the impact and feedback effects of jump versus normal return innovations, leverage effects, and the time‐series dynamics of jump clustering.
This paper models components of the return distribution, which are assumed to be directed by a latent news process. The conditional variance of returns is a combination of jumps and smoothly changing components. A heterogeneous Poisson process with a time-varying conditional intensity parameter governs the likelihood of jumps. Unlike typical jump models with stochastic volatility, previous realizations of both jump and normal innovations can feed back asymmetrically into expected volatility. This model improves forecasts of volatility, particularly after large changes in stock returns. We provide empirical evidence of the impact and feedback effects of jump versus normal return innovations, leverage effects, and the time-series dynamics of jump clustering.
Existing methods of partitioning the market index into bull and bear regimes do not identify market corrections or bear market rallies. In contrast, our probabilistic model of the return distribution allows for rich and heterogeneous intra-regime dynamics. We focus on the characteristics and dynamics of bear market rallies and bull market corrections, including, for example, the probability of transition from a bear market rally into a bull market versus back to the primary bear state. A Bayesian estimation approach accounts for parameter and regime uncertainty and provides probability statements regarding future regimes and returns. We show how to compute the predictive density of long-horizon returns and discuss the improvements our model provides over benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.