These data support accumulating evidence that CMI is a disorder of the para-axial mesoderm that is characterized by underdevelopment of the posterior cranial fossa and overcrowding of the normally developed hindbrain. Tonsillar herniation of less than 5 mm does not exclude the diagnosis. Clinical manifestations of CMI seem to be related to cerebrospinal fluid disturbances (which are responsible for headaches, pseudotumor-like episodes, endolymphatic hydrops, syringomyelia, and hydrocephalus) and direct compression of nervous tissue. The demonstration of familial aggregation suggests a genetic component of transmission.
BackgroundThe pathogenesis of Chiari malformations is incompletely understood. We tested the hypothesis that different etiologies have different mechanisms of cerebellar tonsil herniation (CTH), as revealed by posterior cranial fossa (PCF) morphology.MethodsIn 741 patients with Chiari malformation type I (CM-I) and 11 patients with Chiari malformation type II (CM-II), the size of the occipital enchondrium and volume of the PCF (PCFV) were measured on reconstructed 2D-CT and MR images of the skull. Measurements were compared with those in 80 age- and sex-matched healthy control individuals, and the results were correlated with clinical findings.ResultsSignificant reductions of PCF size and volume were present in 388 patients with classical CM-I, 11 patients with CM-II, and five patients with CM-I and craniosynostosis. Occipital bone size and PCFV were normal in 225 patients with CM-I and occipitoatlantoaxial joint instability, 55 patients with CM-I and tethered cord syndrome (TCS), 30 patients with CM-I and intracranial mass lesions, and 28 patients with CM-I and lumboperitoneal shunts. Ten patients had miscellaneous etiologies. The size and area of the foramen magnum were significantly smaller in patients with classical CM-I and CM-I occurring with craniosynostosis and significantly larger in patients with CM-II and CM-I occurring with TCS.ConclusionsImportant clues concerning the pathogenesis of CTH were provided by morphometric measurements of the PCF. When these assessments were correlated with etiological factors, the following causal mechanisms were suggested: (1) cranial constriction; (2) cranial settling; (3) spinal cord tethering; (4) intracranial hypertension; and (5) intraspinal hypotension.
This report summarizes neuropathological, clinical, and general autopsy findings in 105 individuals with nonneoplastic syringomyelia. On the basis of detailed histological findings, three types of cavities were distinguished: 1) dilations of the central canal that communicated directly with the fourth ventricle (47 cases); 2) noncommunicating (isolated) dilations of the central canal that arose below a syrinx-free segment of spinal cord (23 cases); and 3) extracanalicular syrinxes that originated in the spinal cord parenchyma and did not communicate with the central canal (35 cases). The incidence of communicating syrinxes in this study reflects an autopsy bias of morbid conditions such as severe birth defects. Communicating central canal syrinxes were found in association with hydrocephalus. The cavities were lined wholly or partially by ependyma and their overall length was influenced by age-related stenosis of the central canal. Non-communicating central canal syrinxes arose at a variable distance below the fourth ventricle and were associated with disorders that presumably affect cerebrospinal fluid dynamics in the spinal subarachnoid space, such as the Chiari I malformation, basilar impression, and arachnoiditis. These cavities were usually defined rostrally and caudally by stenosis of the central canal and were much more likely than communicating syrinxes to dissect paracentrally into the parenchymal tissues. The paracentral dissections of the central canal syrinxes occurred preferentially into the posterolateral quadrant of the spinal cord. Extracanalicular (parenchymal) syrinxes were found typically in the watershed area of the spinal cord and were associated with conditions that injure spinal cord tissue (for example, trauma, infarction, and hemorrhage). A distinguishing feature of this type of cavitation was its frequent association with myelomalacia. Extracanalicular syrinxes and the paracentral dissections of central canal syrinxes were lined by glial or fibroglial tissue, ruptured frequently into the spinal subarachnoid space, and were characterized by the presence of central chromatolysis, neuronophagia, and Wallerian degeneration. Some lesions extended rostrally into the medulla or pons (syringobulbia). Although clinical information was incomplete, simple dilations of the central canal tended to produce nonspecific neurological findings such as spastic paraparesis, whereas deficits associated with extracanalicular syrinxes and the paracentral dissections of central canal syrinxes included segmental signs that were referable to affected nuclei and tracts. It is concluded that syringomyelia has several distinct cavitary patterns with different mechanisms of pathogenesis that probably determine the clinical features of the condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.