Four-dimensional flow MR imaging showed abnormal helical systolic flow in the ascending aorta of patients with a BAV, including those without aneurysm or aortic stenosis. Identification and characterization of eccentric flow jets in these patients may help identify those at risk for development of ascending aortic aneurysm.
The aim of this study was to determine the prevalence, characteristics and outcomes of patients with unclassifiable interstitial lung disease (ILD) and to develop a simple method of predicting disease behaviour.Unclassifiable ILD patients were identified from an ongoing longitudinal cohort. Unclassifiable ILD was diagnosed after a multidisciplinary review did not secure a specific ILD diagnosis. Clinical characteristics and outcomes were compared with idiopathic pulmonary fibrosis (IPF) and non-IPF ILDs. Independent predictors of mortality were determined using Cox proportional-hazards analysis to identify subgroups with distinct disease behaviour.Unclassifiable ILD was diagnosed in 10% of the ILD cohort (132 out of 1370 patients). The most common reason for being unclassifiable was missing histopathological assessment due to a high risk of surgical lung biopsy. Demographic and physiological features of unclassifiable ILD were intermediate between IPF and non-IPF disease controls. Unclassifiable ILD had longer survival rates when compared to IPF on adjusted analysis (hazard ratio 0.62, p50.04) and similar survival compared to non-IPF ILDs (hazard ratio 1.54, p50.12). Independent predictors of survival in unclassifiable ILD included diffusion capacity of the lung for carbon monoxide (p50.001) and a radiological fibrosis score (p50.02).Unclassifiable ILD represents approximately 10% of ILD cases and has a heterogeneous clinical course, which can be predicted using clinical and radiological variables. @ERSpublications Unclassifiable ILD has a heterogeneous clinical course that can be predicted using clinical and radiological variables
Blood flow imaging with 3-dimensional time-resolved, phase-contrast cardiac magnetic resonance (4-dimensional [4D] Flow) is an innovative and visually appealing method for studying cardiovascular disease that allows quantification of important secondary vascular parameters including wall shear stress. The hypothesis of this pilot study is that 4D Flow will become a powerful tool for characterizing the relationship of aortic valve-related flow dynamics, especially with bicuspid aortic valve (BAV), and progression of ascending aortic (AsAo) dilation. We identified 46 patients previously studied with 4D Flow: tricuspid aortic valve patients without valvular disease (n = 20), and BAV patients with either normal flow (n = 7) or eccentric systolic jets resulting in abnormal right-handed helical AsAo flow (n = 19). The subgroup of patients with BAV and eccentric systolic AsAo blood flow was found to have significantly and asymmetrically elevated wall shear stress. This increased hemodynamic burden may place them at risk for AsAo aneurysm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.