We report the direct observation of hot carriers generated by Auger recombination via photoluminescence spectroscopy on tailored (AlGaIn)N multiple quantum well (QW) structures containing alternating green and ultra-violet (UV) emitting (GaIn)N QWs. Optically pumping solely the green QWs using a blue emitting high power laser diode, carrier densities similar to electrical light-emitting diode (LED) operation were achieved, circumventing possible leakage and injection effects. This way, luminescence from the UV QWs could be observed for excitation where the emission from the green QWs showed significant droop, giving direct evidence for Auger generated hot electrons and holes being injected into the UV QWs. An examination of the quantitative relation between the intensity of the UV luminescence and the amount of charge carriers lost due to drooping of the QWs supports the conclusion that Auger processes contribute significantly to the droop phenomenon in (AlGaIn)N based light-emitting diodes. Due to their high lifetimes and efficiencies along with rapidly declining prices, light-emitting diodes (LEDs) based on (AlGaIn)N multiple quantum well (MQW) structures are on their way to replace incandescent as well as fluorescent lighting. Despite great progress in recent years, resulting in peak power conversion efficiencies of up to 81%, 1 one obstacle still to overcome is the decrease in efficiency towards high operating current densities, a phenomenon commonly known as droop. 2,3 The current dependency of the internal quantum efficiency (IQE) can be modeled in good quantitative agreement with experimental data using an ABC rate equation model [4][5][6]
Longitudinal mode competition in (Al,In)GaN laser diodes at λ = 445nm and 515 nm with mode competition frequencies from 10 MHz to 150 MHz is observed. Up to two dozen lasing modes oscillate with the lasing mode rolling from the short wavelength edge to the long wavelength edge of the gain profile. The experimental results can be described very well with a set of multi-mode rate equations including self-, symmetric and asymmetric cross gain saturation. By tuning essential parameters of the gain saturation terms, mode competition disappears and single mode operation as well as mode clustering is found. This proves that the mechanisms of gain saturation have not only a profound impact on the complex temporal-spectral behavior but also explains mode clustering in (Al,In)GaN laser diodes, both in pulsed and continuous wave (cw) operation as a natural nonlinear effect without the necessity to add noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.