Background T follicular helper (Tfh) cells underpin T-cell dependent humoral immunity and the success of most vaccines. Tfh cells also contribute to human immune disorders such as autoimmunity, immunodeficiency and malignancy. Understanding the molecular requirements for the generation and function of Tfh cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunological abnormalities. Objective To determine the signaling pathways and cellular interactions required for the development and function of Tfh cells in humans. Methods Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating Tfh (cTfh) cell subsets, memory B cells and serum Ig levels were quantified and functionally assessed in healthy controls as well as patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS or BTK. Results Loss-of function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS or BTK reduced cTfh frequencies. STAT3, IL21/R LOF and STAT1 gain-of function mutations skewed cTfh differentiation towards a phenotype characterized by over-expression of IFNγ and programmed death -1 (PD-1). IFNγ inhibited cTfh function in vitro and in vivo, corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1 and IL12RB1 LOF mutations. Conclusion Specific mutations impact the quantity and quality of cTfh cells, highlighting the need to assess Tfh cells in patients by multiple criteria, including phenotype and function. Furthermore, IFNγ functions in vivo to restrain Tfh-induced B cell differentiation. These findings shed new light on Tfh biology and the integrated signaling pathways required for their generation, maintenance and effector function, and explain compromised humoral immunity in some PIDs.
Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65–79), cefotaxime (27% of 6700 isolates, 95% CI: 12–44), chloramphenicol (45% of 7012 isolates, 95% CI: 35–53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11–25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52–73), nalidixic acid (30% of 9819 isolates, 95% CI: 21–40), oxytetracycline (78% of 1451 isolates, 95% CI: 65–88), streptomycin (58% of 3831 isolates, 95% CI: 44–72), tetracycline (67% of 11,847 isolates, 95% CI: 59–74), and trimethoprim (67% of 3265 isolates, 95% CI: 59–75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.
IntroductionLeprosy, or Hansen’s disease, remains a cause of preventable disability. Early detection, treatment and prevention are key to reducing transmission. Post-exposure prophylaxis with single-dose rifampicin (SDR-PEP) reduces the risk of developing leprosy when administered to screened contacts of patients. This has been adopted in the WHO leprosy guidelines. The PEP4LEP study aims to determine the most effective and feasible method of screening people at risk of developing leprosy and administering chemoprophylaxis to contribute to interrupting transmission.Methods and analysisPEP4LEP is a cluster-randomised implementation trial comparing two interventions of integrated skin screening combined with SDR-PEP distribution to contacts of patients with leprosy in Ethiopia, Mozambique and Tanzania. One intervention is community-based, using skin camps to screen approximately 100 community contacts per leprosy patient, and to administer SDR-PEP when eligible. The other intervention is health centre-based, inviting household contacts of leprosy patients to be screened in a local health centre and subsequently receive SDR-PEP when eligible. The mobile health (mHealth) tool SkinApp will support health workers’ capacity in integrated skin screening. The effectiveness of both interventions will be compared by assessing the rate of patients with leprosy detected and case detection delay in months, as well as feasibility in terms of cost-effectiveness and acceptability.Ethics and disseminationEthical approval was obtained from the national ethical committees of Ethiopia (MoSHE), Mozambique (CNBS) and Tanzania (NIMR/MoHCDEC). Study results will be published open access in peer-reviewed journals, providing evidence for the implementation of innovative leprosy screening methods and chemoprophylaxis to policymakers.Trial registration numberNL7294 (NTR7503).
Background Delay in case detection is a risk factor for developing leprosy-related impairments, leading to disability and stigma. The objective of this study was to develop a questionnaire to determine the leprosy case detection delay, defined as the period between the first signs of the disease and the moment of diagnosis, calculated in total number of months. The instrument was developed as part of the PEP4LEP project, a large-scale intervention study which determines the most effective way to implement integrated skin screening and leprosy post-exposure prophylaxis with a single-dose of rifampicin (SDR-PEP) administration in Ethiopia, Mozambique and Tanzania. Methodology/Principal findings A literature review was conducted and leprosy experts were consulted. The first draft of the questionnaire was developed in Ethiopia by exploring conceptual understanding, item relevance and operational suitability. Then, the first draft of the tool was piloted in Ethiopia, Mozambique and Tanzania. The outcome is a questionnaire comprising nine questions to determine the case detection delay and two annexes for ease of administration: a local calendar to translate the patient’s indication of time to number of months and a set of pictures of the signs of leprosy. In addition, a body map was included to locate the signs. A ‘Question-by-Question Guide’ was added to the package, to provide support in the administration of the questionnaire. The materials will be made available in English, Oromiffa (Afaan Oromo), Portuguese and Swahili via https://www.infolep.org. Conclusions/Significance It was concluded that the developed case detection delay questionnaire can be administered quickly and easily by health workers, while not inconveniencing the patient. The instrument has promising potential for use in future leprosy research. It is recommended that the tool is further validated, also in other regions or countries, to ensure cultural validity and to examine psychometric properties like test-retest reliability and interrater reliability.
Background Leprosy is an infectious disease caused by Mycobacterium leprae. As incidence begins to decline, the characteristics of new cases shifts away from those observed in highly endemic areas, revealing potentially important insights into possible ongoing sources of transmission. We aimed to investigate whether transmission is driven mainly by undiagnosed and untreated new leprosy cases in the community, or by incompletely treated or relapsing cases. Methodology/Principal findings A literature search of major electronic databases was conducted in January, 2020 with 134 articles retained out of a total 4318 records identified (PROSPERO ID: CRD42020178923). We presented quantitative data from leprosy case records with supporting evidence describing the decline in incidence across several contexts. BCG vaccination, active case finding, adherence to multidrug therapy and continued surveillance following treatment were the main strategies shared by countries who achieved a substantial reduction in incidence. From 3950 leprosy case records collected across 22 low endemic countries, 48.3% were suspected to be imported, originating from transmission outside of the country. Most cases were multibacillary (64.4%) and regularly confirmed through skin biopsy, with 122 cases of suspected relapse from previous leprosy treatment. Family history was reported in 18.7% of cases, while other suspected sources included travel to high endemic areas and direct contact with armadillos. None of the countries included in the analysis reported a distinct increase in leprosy incidence in recent years. Conclusions/Significance Together with socioeconomic improvement over time, several successful leprosy control programmes have been implemented in recent decades that led to a substantial decline in incidence. Most cases described in these contexts were multibacillary and numerous cases of suspected relapse were reported. Despite these observations, there was no indication that these cases led to a rise in new secondary cases, suggesting that they do not represent a large ongoing source of human-to-human transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.