A promising low-cost solution for monitoring spectral information, e.g., on agricultural fields, is that of wireless sensor networks. In contrast to remote sensing, these can achieve more continuous monitoring due to their long-term deployment and are less impacted by the atmosphere, making them a promising solution for the calibration of satellite data. In this paper, we explore an alternative approach for processing data from such a network. Hyperspectral sensors were found to be too complex for such a network. While previous work considered fusing the data from different multispectral sensors in order to derive hyperspectral data, we shift the assessment of the hyperspectral modeling in a separate preprocessing step based on machine learning. We then use the learned data as additional input while using identical multispectral sensors, further reducing the complexity of the sensors. Despite requiring careful parametrization, the approach delivers hyperspectral data of similar and in some cases even better quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.