During the development of a commercial vacuum interrupter for application in HV (high voltage) switchgear at a rated voltage of 145kV, we investigated the behavior of vacuum arcs controlled by axial magnetic fields (AMF). AMF arc control is already extensively used in medium voltage (1-52kV) applications, the key difference is the 2-3 times larger contact gap and the corresponding reduction of the AMF strength for HV applications. We conducted several stress tests with short circuit currents up to 40kA, thus not only testing the interrupting capability, but also the electrical endurance of such a contact system. We also investigated the dielectric behavior of the vacuum interrupter by testing the capacitive switching duty. Overall, the contacts were used in about 40 operations at high currents. Despite this large number of operations, they showed a minimal amount of contact erosion and damage and demonstrated behavior very similar to the extensive experience with MV vacuum interrupters. In line with simulation results, we conclude that even at high contact gaps and currents, a diffuse vacuum arc was maintained which distributed the arc energy evenly over the contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.