Introduction␥␦ T cells are key players in the immune surveillance of cellular distress, thanks to their ability to recognize conserved determinants up-regulated after inflammation, infection, or cell transformation. 1,2 Although ␥␦ T-cell receptors (TCRs) contribute to detection of danger-associated determinants, ligands for these receptors have been identified in a few cases only. 3 Thus, the antigenic specificity of ␥␦ T cells and their fine activation modalities in response to cell stress remain largely unknown.One of the best studied ␥␦ T-cell subsets in humans expresses V␥9V␦2 TCR and predominates in blood, composing several percent of the whole peripheral lymphoid pool in most adults. V␥9V␦2 T cells are activated by nonpeptidic phosphorylated isoprenoid pathway metabolites, 4-6 hereafter referred to as phosphoagonists (PAg). Natural V␥9V␦2-stimulating PAg include isopentenyl pyrophosphate (IPP), 7 a metabolite of the mevalonate pathway found in mammalian cells and the desoxyxylulose phosphate pathway shared by many microorganisms, and hydroxy-methyl-butyl-pyrophosphate, 8 an intermediate of the latter pathway. PAg detection by ␥␦ T cells underlies their broad reactivity toward infected and transformed cells. Indeed, tumor cell recognition by V␥9V␦2 T cells is linked to enhanced production of the weak agonist IPP, resulting from increased cell metabolism and cholesterol biosynthesis. Accordingly, pharmacologic inhibitors of the mevalonate pathway that up-regulate (eg, aminobisphosphonates, NBP) or down-regulate (eg, statins) IPP production, respectively, increase or decrease antitumor V␥9V␦2 T-cell responses. 9,10 Moreover, because of the high V␥9V␦2 T cell-stimulating activity of the microbial agonist hydroxy-methyl-butyl-pyrophosphate, V␥9V␦2 T-cell responses are elicited by infected cells producing even traces of this PAg. 8 Although PAg-induced activation is restricted to V␥9V␦2 T cells and can be conferred by V␥9V␦2 TCR gene transfer, 11,12 attempts to detect cognate interactions between PAg and V␥9V␦2 TCR have failed so far. 13 So how V␥9V␦2 T cells sense PAg remains an enigma. PAg rapidly induce Ca 2ϩ signaling and activation of V␥9V␦2 T-cell clones, but this requires cell-to-cell contact, suggesting the implication of additional target cell surface receptors in this phenomenon. 11,14 PAg elicit V␥9V␦2 T-cell responses against basically all human cells, irrespective of their tissue origin, but do not induce recognition of any murine target cells. Therefore, the putative target cell receptors involved in PAg-mediated T-cell activation are expected to be broadly expressed by human, but not murine, cells.Activation of antigen-stimulated T cells is tuned by interactions involving T cell-derived CD28-related receptors and target cellderived B7-related counter-receptors, 15 which family includes members, such as Skint and butyrophilin (BTN) receptors. The mandatory role played by Skint-1 in the intrathymic positive There is an Inside Blood commentary on this article in this issue.The online version of this...
Human Vγ9Vδ2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of γδ and CD8 T cells. This study provides evidence that Vγ9Vδ2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vγ9Vδ2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-α but not of IFN-γ, as well as the release of cytolytic granules by Vγ9Vδ2 T cells. Purified Vγ9Vδ2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vγ9Vδ2 T cells. These remarkable similarities in NKG2D function in NK and Vγ9Vδ2 T cells may open new perspectives for Vγ9Vδ2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.
Vg9Vd2 T cells respond in a TCR-dependent fashion to both microbial and host-derived pyrophosphate compounds (phosphoantigens, or P-Ag). Butyrophilin-3A1 (BTN3A1), a protein structurally related to the B7 family of costimulatory molecules, is necessary but insufficient for this process. We performed radiation hybrid screens to uncover direct TCR ligands and cofactors that potentiate BTN3A1's P-Ag sensing function. These experiments identified butyrophilin-2A1 (BTN2A1) as essential to Vg9Vd2 T cell recognition. BTN2A1 synergised with BTN3A1 in sensitizing P-Ag-exposed cells for Vg9Vd2 TCR-mediated responses. Surface plasmon resonance experiments established Vg9Vd2 TCRs used germline-encoded Vg9 regions to directly bind the BTN2A1 CFG-IgV domain surface. Notably, somatically recombined CDR3 loops implicated in P-Ag recognition were uninvolved. Immunoprecipitations demonstrated close cell-surface BTN2A1-BTN3A1 association independent of P-Ag stimulation. Thus, BTN2A1 is a BTN3A1-linked co-factor critical to Vg9Vd2 TCR recognition. Furthermore, these results suggest a composite-ligand model of P-Ag sensing wherein the Vg9Vd2 TCR directly interacts with both BTN2A1 and an additional ligand recognized in a CDR3-dependent manner.
Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1×106 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing.
Despite a normal development of all major lymphoid subsets, with time, interleukin-2 (IL-2)-deficient mice develop a fatal immunopathology. The disease phenotype is characterized by lymphoadenopathy, splenomegaly, T cell infiltration of various organs, overproduction of a number of cytokines and autoantibody formation. Phenotypically, CD4+ and CD8+ T cells exhibit features characteristic of antigenically experienced cells. The accumulation of cells with a memory phenotype together with the previous suggestion of an involvement of IL-2 in the termination phase of immune responses prompted us to study the fate of superantigen-reactive T cells in IL-2-deficient mice in comparison to their IL-2-producing littermates. We show that expansion in vivo of CD4+ and, to a lesser extent, CD8+ T cells reactive to the superantigens staphylococcal enterotoxin A and B (SEA and SEB) proceeds normally in the absence of IL-2, but that fewer CD4+ cells are subsequently deleted. The residual superantigen-reactive cells fail to become anergic as measured by proliferation in vitro in response to the same superantigen. T cell blasts generated in vitro from lymph node cells of IL-2-deficient mice by superantigen stimulation in the absence of exogenous IL-2 also fail to become anergic. In contrast to cells from IL-2-producing littermates, they do not exhibit Fas-induced apoptosis when cultured on anti-Fas antibody-coated plates, although Fas expression by IL-2-deficient cells is normal or even elevated compared to the IL-2-producing control cells. The data suggest that activation of T cells in the absence of IL-2 fails to generate a signal which is necessary to activate the apoptotic pathway and thus leads to an accumulation of antigen-experienced cells and the chronic inflammatory responses observed in IL-2-deficient mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.