Patients with systemic pseudohypoaldosteronism fail to absorb liquid from airway surfaces; the result is an increased volume of liquid in the airways. These results demonstrate that sodium transport has a role in regulating the volume of liquid on airway surfaces.
Background: Nontuberculous mycobacteria are recognized as a concern for cystic fibrosis (CF) patients due to increasing disease prevalence and the potential for detrimental effects on pulmonary function and mortality. Current standard of care involves prolonged systemic antibiotics, which often leads to severe side effects and poor treatment outcomes. In this study, we investigated the tolerability and efficacy of a novel inhaled therapeutic in various mouse models of NTM disease. Methods: We developed clofazimine inhalation suspension (CIS), a novel formulation of clofazimine developed for inhaled administration. To determine the efficacy, minimum inhibitory concentrations were evaluated in vitro, and tolerability of CIS was determined in naïve mouse models over various durations. After establishing tolerability, CIS efficacy was tested in in vivo infection models of both Mycobacterium avium and M. abscessus. Lung and plasma clofazimine levels after chronic treatments were evaluated. Results: Clofazimine inhalation suspension demonstrated antimycobacterial activity in vitro, with MIC values between 0.125 and 2 μg/ml for M. avium complex and M. abscessus. Administration into naïve mice showed that CIS was well tolerated at doses up to 28 mg/kg over 28 consecutive treatments. In vivo, CIS was shown to significantly improve bacterial elimination from the lungs of both acute and chronic NTM-infected mouse models compared to negative controls and oral clofazimine administration. Clofazimine concentrations in lung tissue were approximately four times higher than the concentrations achieved by oral dosing. Conclusion: Clofazimine inhalation suspension is a well tolerated and effective novel therapeutic candidate for the treatment of NTM infections in mouse models.
The raised nasal transepithelial potential difference (PD) in cystic fibrosis (CF) reflects accelerated active transport of Na+, and is inhibited by topical administration of the Na+ channel blocker, amiloride. The aim of this study was to investigate the dose-effect and time course of topically administered Na+ conductance inhibitors to inhibit nasal PD, including benzamil, an analog of amiloride. We measured the magnitude of drug inhibition of Na+ transport [percent inhibition of baseline PD (DeltaPD%)] and duration of inhibition of PD, defined as the time when drug inhibition of PD had recovered by 50% (effective time = ET50). Amiloride [10(-)3 M (n = 16), 3 x 10(-)3 M (n = 9), 6 x 10(-)3 M (n = 7), 10(-)2 M (n = 3)] or benzamil [1.7 x 10(-)3 M (n = 7), and 7 x 10(-)3 M (n = 5)] were administered to the nasal surface via an aerosol generated by a jet nebulizer and a nasal mask. The concentration-dependent magnitude (DeltaPD%) of inhibition was similar for amiloride and benzamil ( approximately 67- 77%), whereas the duration of inhibition (ET50) was about two-and-a-half times longer after benzamil administration as compared with equivalent concentrations of amiloride [1.6 +/- 0. 06 versus 4.5 +/- 0.6 h (ET50 +/- SEM), at 6-7 x 10(-)3 M]. In vitro studies of cultured normal nasal epithelia demonstrated directly that benzamil induced an approximately 2-fold more prolonged inhibition of active Na+ transport than amiloride. These data suggest aerosolized benzamil is a candidate long-duration Na+ channel blocker for CF.
Influenza has been a long-running health problem and novel antiviral drugs are urgently needed. In pre-clinical studies, we demonstrated broad antiviral activity of D, L-lysine-acetylsalicylate glycine (LASAG) against influenza virus (IV) in cell culture and protection against lethal challenge in mice. LASAG is a compound with a new antiviral mode of action. It inhibits the NF-κB signal transduction module that is essential for IV replication. Our goal was to determine whether aerosolized LASAG would also show a therapeutic benefit in hospitalized patients suffering from severe influenza. The primary endpoint was time to alleviation of clinical influenza symptoms. The primary analysis was based on the modified intention-to-treat (MITT) population. This included all patients with confirmed influenza virus infection who received at least one treatment. The per protocol (PP) analysis set included all subjects from the MITT population who underwent at least 13 inhalations. In the MITT group, 48 (41.7%) participants (29 LASAG; 19 placebo) had severe influenza. The mean time to symptom alleviation was 56.2 h in the placebo group and 43.0 h in the LASAG group. The PP set consisted of 41 patients (24 LASAG; 17 placebo). The mean time to symptom alleviation in the LASAG group (38.3 h; P = 0.0365) was lower than that in the placebo group (56.2 h). In conclusion, LASAG improved the time to alleviation of influenza symptoms in hospitalized patients. The present phase II proof-of-concept (PoC) study demonstrates that targeting an intra-cellular signaling pathway using aerosolized LASAG improves the time to symptom alleviation compared to standard treatment.
Transepithelial short-circuit current (ISC), potential (VT) and resistance (RT) of confluent monolayers of human nasal epithelium cultured from patients with and without cystic fibrosis (CF) were measured. In our Ussing chamber experiments with monolayers derived from non-CF and CF patients neither ISC (non-CF: 14.1 +/- 1.0 microA/cm2, n = 77; CF: 16.7 +/- 1.5 microA/cm2, n = 42), nor RT (non-CF: 288 +/- 15 Omega . cm2; CF: 325 +/- 20 Omega . cm2) showed any significant differences, only VT showed moderate but significant different values (non-CF: -3.6 +/- 0.4 mV; CF: -5.6 +/- 0.7 mV, respectively). Total ISC in CF cells was nearly completely inhibited by amiloride (92 +/- 9.6%), while in non-CF tissue amiloride-insensitive conductances mediated a considerable amount of the ISC (36.3 +/- 6.1%), indicating a lower activity of amiloride-sensitive Na+ conductances in non-CF cells. In both tissues the amiloride-sensitive ISC could also be blocked by the amiloride analogues benzamil, phenamil and 5-(N-ethyl-N-isopropyl)2', 4'-amiloride (EIPA) with different affinities. However, amiloride had a significant lower affinity in CF tissue (half-maximal blocker concentration, K1/2 = 586 +/- 59 nM) compared with non-CF tissue (K1/2 = 294 +/- 22 nM). Astonishingly, phenamil, a blocker which irreversibly blocks all epithelial Na+ channels hitherto described, inhibited the Na+ conductances of human nasal epithelium in a completely reversible way, but nevertheless with high affinity (non-CF: K1/2 = 12.5 +/- 1.2 nM; CF: K1/2 = 17.1 +/- 1.1 nM). Even in high doses none of these blockers had any effect on intracellular Ca2+ concentration as measured with Fura-2. From these findings, we conclude that the epithelial Na+ conductances of human CF nasal epithelium show modified regulation or are functionally different from those of other tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.