Nanofiltration technology has come a long way since first inception in the late 1980s. Research activity in this area covers a great many topics and the aim of this review is to quantify the level interest in each of these areas. The number of annual publications directly related to nanofiltration technology has been harvested from ScienceDirect since 2007. This quantification of research has shown that interest in nanofiltration technology has grown over the past decade, particularly over the past five years. The primary journals reporting articles on nanofiltration are the Journal of Membrane Science, Desalination and Separation and Purification Technology, although articles have been spread across a further 139 journals. Unsurprisingly, the major topics of interest have been water processing, membrane fabrication and membrane surface modification. There has been clear growth in the areas of organic solvent nanofiltration, pharmaceutical and biological applications, design and economics of nanofiltration processes and review articles. Nanofiltration modelling has received less support over the period reviewed and has experienced a steady decline. Clearly the overall growing trend in nanofiltration research indicates that the technology remains popular and this interest should materialise into further applications for a robust and sustainable future.
A prototype design of a reactor for scalable functionalization of SWCNTs by the reaction of alkyl halides with Billups-Birch reduced SWCNTs is described. The Hauge apparatus is designed to allow for the safe handling of all the reagents and products under an inert atmosphere at controlled temperatures. The extent of reaction of Li/NH 3 solution with the SWCNTs is measured in-situ by solution conduction, while homogenous mixing is ensured by the use of a homogenizer, and thermocouple are placed at different heights within the reactor flask. Addition of an alkyl halide yield alkyl-functionalized SWCNTs, which may be isolated by solvent extraction leaving a solid sample that is readily purified by hydrocarbon extraction. As an example, reaction of SWCNT/Li/NH 3 with 1-iododecane yields dodecane-functionalized SWCNTs (C 12 -SWCNTs), which have been characterized by TG/DTA, XPS, and Raman spectroscopy. Sample extraction during the reaction allows for probing of the rate of the reaction in order to determine the end point of the reaction, which for C 12 -SWCNTs (at −78 • C) is 30 min.
The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and produced water, which is highly contaminated with hydrocarbons, bacteria and particulates, meaning that traditional membranes are readily fouled. We show the chemical functionalisation of alumina ceramic microfiltration membranes (0.22 μm pore size) with cysteic acid creates a superhydrophilic surface, allowing for separation of hydrocarbons from frac and produced waters without fouling. The single pass rejection coefficients was >90% for all samples. The separation of hydrocarbons from water when the former have hydrodynamic diameters smaller than the pore size of the membrane is due to the zwitter ionically charged superhydrophilic pore surface. Membrane fouling is essentially eliminated, while a specific flux is obtained at a lower pressure (<2 bar) than that required achieving the same flux for the untreated membrane (4–8 bar).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.