Relativistic multireference ab initio wave function calculations within the restricted active space (RAS) framework were performed to calculate metal and ligand X-ray absorption (XAS) near-edge spectroscopy (XANES) intensities for the metal M edges of [PuO(HO)], [AnO] (An = U, Np, Pu), and [AmCl] and the Cl K edge of the Am complex. The extent of An(5f)-ligand bonding was determined via natural localized molecular orbital analyses of the relevant spin-orbit coupled multireference states. The calculated spectra are in good agreement with experiments and allow a detailed assignment of the observed spectral features. The XANES M-edge spectra are representative of the actinide orbital covalency in the probed core-excited states, which may be different from the ground-state covalency. An assignment of ground-state An orbital covalency based on XAS spectra should therefore be made with caution.
Unsupported non-bridged uranium–carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing Ih(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer–Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium–carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
The extent of ligand to metal donation bonding and mixing of 4f (and 5d) orbitals with ligand orbitals is studied by Kohn-Sham (KS) calculations for LaX3 (X = F, Cl, Br, I), GdX3, and LuX3 model complexes, CeCl6(2-), YbCp3, and selected lanthanide complexes with larger ligands. The KS delocalization error (DE) is quantified via the curvature of the energy for noninteger electron numbers. The extent of donation bonding and 4f-ligand mixing correlates well with the DE. For Lu complexes, the DE also correlates with the extent of mixing of ligand and 4f orbitals in the canonical molecular orbitals (MOs). However, the localized set of MOs and population analyses indicate that the closed 4f shell is localized. Attempts to create situations where mixing of 4f and ligand orbitals occurs due to a degeneracy of fragment orbitals were unsuccessful. For La(III) and, in particular, for Ce(IV), Hartree-Fock, KS, and coupled cluster singles and doubles calculations are in agreement in that excess 4f populations arise from ligand donation, along with donation into the 5d shell. Likewise, KS calculations for all systems with incompletely filled 4f shells, even those with "optimally tuned" functionals affording a small DE, produce varying degrees of excess 4f populations which may be only partially attributed to 5d polarization.
The electronic structures of 4f(3)/5f(3) Cp''3M and Cp''3M·alkylisocyanide complexes, where Cp'' is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal-ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(iii) and uranium(iii) tris-cyclopentadienyl complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. While interaction with the isocyanide π*-orbitals lowers the energies of the 5fxz(2) and 5fyz(2)-orbitals, spin-orbit coupling greatly reduces the population of 5fxz(2) and 5fyz(2) in the ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.