The G1y 93-*AIa mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD 1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometnc measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but predisease), 100 (~50%loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1 H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN (SOD1 -G93A) Gi H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100-120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120day-old TgN (SOD1 -G93A) Gi H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function. Key Words: Transgenic mouse-Familial amyotrophic lateral sclerosis-Protein oxidation-Car-bonyl content-Dinitrophenylhydrazine-Western immunoblot.
the Harvard University MRL. The rotating-anode facility is part of the MRL. The synchrotron measurements were carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. Research at the NSLS is supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC02-76CH00016. Ian Tidswell was the recipient of a NATO studentship. We are grateful to Dr. David Osterman and Dr. Thomas Rabedeau for assistance in these experiments, to Dr. Abraham Ulman of Eastman Kodak for providing preprints of articles, and to Dr. Ralph Nuzzo of AT&T Bell Laboratories for helpful discussions.
Mutations of copper,zinc-superoxide dismutase (cu,zn SOD) are found in patients with a familial form of amyotrophic lateral sclerosis. When expressed in transgenic mice, mutant human cu,zn SOD causes progressive loss of motor neurons with consequent paralysis and death. Expression profiling of gene expression in SOD1-G93A transgenic mouse spinal cords indicates extensive glial activation coincident with the onset of paralysis at 3 months of age. This is followed by activation of genes involved in metal ion regulation (metallothionein-I, metallothionein-III, ferritin-H, and ferritin-L) at 4 months of age just prior to end-stage disease, perhaps as an adaptive response to the mitochondrial destruction caused by the mutant protein. Induction of ferritin-H and -L gene expression may also limit iron catalyzed hydroxyl radical formation and consequent oxidative damage to lipids, proteins, and nucleic acids. Thus, glial activation and adaptive responses to metal ion dysregulation are features of disease in this transgenic model of familial amyotrophic lateral sclerosis.
BackgroundPruritus is a characteristic clinical sign of allergic skin conditions including atopic dermatitis (AD) in the dog. IL‐31 is a cytokine found in the serum of some dogs with AD and can induce pruritic behaviours in laboratory beagle dogs.Hypothesis/ObjectivesThe objectives were to characterize an IL‐31‐induced pruritus model by evaluating the efficacy of prednisolone, dexamethasone and oclacitinib, and to compare the speed of anti‐pruritic effects of oclacitinib against those of prednisolone and dexamethasone.AnimalsPurpose‐bred beagle dogs were used in all studies.MethodsRandomized, blinded, placebo‐controlled studies were designed to evaluate and compare the anti‐pruritic properties of prednisolone, dexamethasone and oclacitinib following a single intravenous injection of recombinant canine IL‐31. Video surveillance was used to monitor and score pruritic behaviours in study animals.ResultsPrednisolone [0.5 mg/kg, per os (p.o.)] reduced IL‐31‐induced pruritus when given 10 h prior to observation. When the time interval between drug treatment and observation was shortened to 1 h, dexamethasone (0.2 mg/kg, intramuscular) but not prednisolone (0.25 or 0.5 mg/kg, p.o.) reduced IL‐31‐induced pruritus. Oclacitinib (0.4 mg/kg, p.o.) reduced pruritus when given 1, 6, 11 and 16 h prior to the observation period, and the anti‐pruritic activity of oclacitinib was greater when compared to prednisolone and dexamethasone at all time points assessed.Conclusion and clinical importanceThe efficacy of prednisolone, dexamethasone and oclacitinib in the IL‐31‐induced pruritus model gives confidence that this may be a relevant model for acute pruritus associated with allergic dermatitis including AD and can be used to evaluate novel compounds or formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.