In order for diffuse optical tomography to realize its potential of obtaining quantitative images of spatially varying optical properties within random media, several potential experimental systematic errors must be overcome. One of these errors is the calibration of the emitter strength and detector efficiency/gain. While in principle these parameters can be determined accurately prior to an imaging experiment, slight fluctuations will cause significant image artifacts. For this reason, it is necessary to consider including their calibration as part of the inverse problem for image reconstruction. In this paper, we show that this can be done successfully in a linear reconstruction model with simulated continuous-wave data. The technique is general for frequency and time domain data.
We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two 'object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.