The high-throughput 96-well plate method proved to be as robust and reproducible as the conventional method for determining total phenolic content, flavonoid content and DPPH-scavenging capacity in either sorghum bran or flour.
The poor barrier and mechanical properties of biopolymer‐based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch‐clay nanocomposites were synthesized by a melt extrusion method. Natural (MMT) and organically modified (I30E) montmorillonite clays were chosen for the nanocomposite preparation. The structures of the hybrids were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Films were made through casting using granulate produced by a twin‐screw extruder. Starch/MMT composite films showed higher tensile strength and better water vapor barrier properties than films from starch/I30E composites, as well as pristine starch, due to formation of intercalated nanostructure. To find the best combinations of raw materials, the effects of clay content (0–21 wt% MMT), starch sources (corn, wheat, and potato), and amylose content (≈0, 28, 55, 70, 100%) on barrier and mechanical properties of the nanocomposite films were investigated. With increase in clay content, significantly higher (15–92%) tensile strength (TS), and lower (22–67%) water vapor permeability (WVP) were obtained. The barrier and mechanical properties of nanocomposite films did not vary significantly with different starch sources. Nanocomposite films from regular corn starch had better barrier and mechanical properties than either high amylopectin or high‐amylose‐based nanocomposite films. WVP, TS, and elongation at break (%E) of the films did not change significantly as amylose content increased beyond 50%.
Ice cream mixes and frozen ice creams at milk fat levels of 12%, 8%, 6%, 6% plus a protein-based fat replacer, and 6% plus a carbohydrate-based fat replacer were evaluated for viscoelastic properties by dynamic testing with sinusoidal oscillatory tests at various frequencies. The storage modulus (G'), loss modulus (G"), and tan delta (G"/G') were calculated for all the treatments to determine changes in the viscous and elastic properties of the mixes and frozen ice creams due to fat content. In ice cream mixes, G' and G" exhibited a strong frequency dependence. The G" was higher than G' throughout the frequency range (1 to 8 Hz) examined, without any crossover, except for the 12% mix. Elastic properties of the ice cream mixes decreased as fat content decreased. Tan delta values indicated that fat replacers did not enhance the elastic properties of the ice cream mixes. In all frozen ice creams, G' and G" again showed a frequency dependence throughout the range tested (0.5 to 10 Hz). The amount of fat in ice creams and the degree of fat destabilization affected the elasticity in the frozen product. Even though the ice creams did not have significant elastic properties, when compared as a group the samples with higher fat content had higher elastic properties. The addition of protein-based and carbohydrate-based fat replacers did not enhance the elastic properties of the ice creams but did increase the viscous properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.