Variant histones that differ in amino acid sequence from S-phase histones are widespread in eukaryotes, yet the structural changes they cause to nucleosomes and how those changes affect relevant cellular processes have not been determined. H2A.F/Z is a highly conserved family of H2A variants. H2Av, the H2A.F/Z variant of Drosophila melanogaster, was localized in polytene chromosomes by indirect immunofluorescence and in diploid chromosomes by chromatin immunoprecipitation. H2Av was widely distributed in the genome and not limited to sites of active transcription. H2Av was present in thousands of euchromatic bands and the heterochromatic chromocenter of polytene chromosomes, and the H2Av antibody precipitated both transcribed and nontranscribed genes as well as noncoding euchromatic and heterochromatic sequences. The distribution of H2Av was not uniform. The complex banding pattern of H2Av in polytene chromosomes did not parallel the concentration of DNA, as did the pattern of immunofluorescence using H2A antibodies, and the density of H2Av measured by immunoprecipitation varied between different sequences. Of the sequences assayed, H2Av was least abundant on 1.688 satellite sequences and most abundant on the hsp70 genes. Finally, transcription caused, to an equivalent extent, both H2Av and H2A to be less tightly associated with DNA.The basic unit of chromatin in eukaryotes is the nucleosome. A nucleosome consists of 146 base pairs of DNA wrapped around an octamer of histone proteins H2A, H2B, H3, and H4 (1). Although chromatin is a highly reiterative structure, cells create heterogeneity in the structure of nucleosomes to facilitate and regulate DNA-mediated processes such as transcription. Heterogeneity is created, in part, by posttranslational modifications of histone proteins, including acetylation, phosphorylation, methylation, ubiquitination, and ADP-ribosylation (2-4). Acetylation status of the amino termini of histones H3 and H4, in particular, plays a important role in transcriptional regulation (2, 5).Heterogeneity in nucleosome structure also results from incorporation of variant histone proteins into the nucleosome. In contrast to the canonical histones, which are multicopy genes expressed during S-phase of the cell cycle, variant histones are encoded by single copy genes that differ in amino acid sequence from S-phase histones and whose expression is not limited to S-phase (6, 7). Variant histones allow specialization of nucleosome structure for specific purposes. Sperm-specific variant histones, for example, facilitate the dramatic compaction of DNA that occurs during spermatogenesis (4,8). A specific variant of histone H3 is incorporated specifically at centromeres creating a specialized chromatin structure required for proper function of the kinetochore (9 -14), and macro-H2A, a histone H2A variant, localizes preferentially to the inactive X chromosome in mammals and may alter chromatin in a way that helps suppress transcription (15). These and other variants have been identified for histones H2A,...
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE 1672 mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205 2 , parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.