Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite's precise rotation state, finding a forced physical libration of 0.120 ± 0. 014° (2σ). This value is too large to be consistent withEnceladus's core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or require a surprisingly dissipative Saturn.
We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent neutron star, and a brief (∼ 1 s), softer component similar to that expected from emission by accreting material in the delayed supernova scenario. In the context of this model, we show that the data constrain the electron antineutrino rest mass to be less than 5.7 eV with 95% probability. Our analysis takes advantage of significant advances that have occured in the years since the detections in both our understanding of the supernova mechanism and our ability to analyze sparse data. This has led to significant improvement over previous studies in two important respects. First, our comparison of the data with parameterized models of the neutrino emission uses a consistent and straightforward Bayesian statistical methodology. This methodology helps us distinguish the complementary tasks of parameter estimation and model assessment, and fully accounts for the strong, nonlinear correlations between inferred values of neutrino emission model parameters. It also clarifies and improves the derivation of the likelihood function (the probability for the data), improving on earlier derivations in two ways: more consistent accounting for the energy-dependent efficiencies of the detectors; and inclusion of the empirically measured detector background spectra. These improvements lead to significant differences between our inferences and those found in earlier studies. Inclusion of detector background spectra proves crucial for proper analysis of the Baksan data and for demonstrating its consistency with data from other detectors. Second, we compare the data with a much wider variety of neutrino emission models than was explored previously, several of them inspired by recent numerical calculations of collapse and explosion based on the delayed supernova mechanism. This allows us to compare predictions of both the prompt and delayed mechanisms with the data, and insures that our conclusions are robust. We find that two-component models for the neutrino signal are ∼ 100 times more probable than single-component models. Moreover, single-component models imply a radius and binding energy for the nascent neutron star significantly larger than those implied by even the stiffest acceptable equations of state for neutron star matter. In contrast, the radius and binding energy implied by two-component models are in agreement with predictions. Taking this agreement with prior expectations into account increases the odds in favor of two-component models by more than an order of magnitude. The inferred characteristics of the neutrino emission are in spectacular agreement with the salient features of the theory of stellar collapse and neutron star formation that had developed over several decades in the absence of direct observati...
The dayside of HD 149026b is near the edge of detectability by the Spitzer Space Telescope. We report on eleven secondary-eclipse events at 3.6, 4.5, 3 × 5.8, 4 × 8.0, and 2 × 16 µm plus three primary-transit events at 8.0 µm. The eclipse depths from jointly-fit models at each wavelength are 0.040 ± 0.003% at 3.6 µm, 0.034 ± 0.006% at 4.5 µm, 0.044 ± 0.010% at 5.8 µm, 0.052 ± 0.006% at 8.0 µm, and 0.085 ± 0.032% at 16 µm. Multiple observations at the longer wavelengths improved eclipse-depth signal-to-noise ratios by up to a factor of two and improved estimates of the planet-to-star radius ratio (R p /R ⋆ = 0.0518 ± 0.0006). We also identify no significant deviations from a circular orbit and, using this model, report an improved period of 2.8758916 ± 0.0000014 days. Chemical-equilibrium models find no indication of a temperature inversion in the dayside atmosphere of HD 149026b. Our best-fit model favors large amounts of CO and CO 2 , moderate heat redistribution ( f = 0.5), and a strongly enhanced metallicity. These analyses use BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping, a new technique to model two position-dependent systematics (intrapixel variability and pixelation) by mapping the pixel surface at high resolution. BLISS mapping outperforms previous methods in both speed and goodness of fit. We also present an orthogonalization technique for linearly-correlated parameters that accelerates the convergence of Markov chains that employ the Metropolis random walk sampler. The electronic supplement contains light-curve files and supplementary figures.
The size distribution in the Kuiper Belt records physical processes operating during the formation and subsequent evolution of the solar system. This paper reports a study of the apparent magnitude distribution of faint objects in the Kuiper Belt, obtained via deep imaging on the Canada-France-Hawaii Telescope and the ESO Very Large Telescope UT1. We Ðnd that the entire range of observed objects (magnitudes is well represented by an unbroken power law, with the number of objects per m R D 20È27) square degree brighter than magnitude R being of the form with a \ 0.69 andThis luminosity functionÏs slope implies a steep size distribution in the observed range, which R 0 \ 23.5. should "" roll over ÏÏ to a shallower "" collisional ÏÏ slope once observations extend to even fainter magnitudes and thus sample bodies whose collisional ages become less than the age of the solar system. Our observations indicate the roll over is for diameters of less than 50 km, in agreement with collisional models. Modeling our survey gives a belt mass between 30 and 50 AU of order 0.1 relatively insen-M^, sitive to the roll over diameter as long as the latter is km. We report the discovery of several objects Z1 outside of 48 AU and discuss the evidence for a sharp outer edge to the trans-Neptunian distribution.
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s −1 measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here.Beginning with the HARPS spectrograph, technological advances for precision radial velocity measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision radial velocity community include distinguishing center of mass Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. Center of mass velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals.Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision radial velocity measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.