Early detection of brain abnormalities at the preclinical stage can be useful for developing preventive interventions to abate cognitive decline. We examined whether middle-aged type 2 diabetic patients show reduced white matter integrity in fiber tracts important for cognition and whether this abnormality is related to preestablished altered resting-state functional connectivity in the default mode network (DMN). Diabetic and nondiabetic participants underwent diffusion tensor imaging, functional magnetic resonance imaging, and cognitive assessment. Multiple diffusion measures were calculated using streamline tractography, and correlations with DMN functional connectivity were determined. Diabetic patients showed lower fractional anisotropy (FA) (a measure of white matter integrity) in the cingulum bundle and uncinate fasciculus. Control subjects showed stronger functional connectivity than patients between the posterior cingulate and both left fusiform and medial frontal gyri. FA of the cingulum bundle was correlated with functional connectivity between the posterior cingulate and medial frontal gyrus for combined groups. Thus, middle-aged patients with type 2 diabetes show white matter abnormalities that correlate with disrupted functional connectivity in the DMN, suggesting that common mechanisms may underlie structural and functional connectivity. Detecting brain abnormalities in middle age enables implementation of therapies to slow progression of neuropathology.
Patients with type 2 diabetes demonstrate reduced functional connectivity within the resting state default mode network (DMN), which may signal heightened risk for cognitive decline. In other populations at risk for cognitive decline, additional magnetic resonance imaging abnormalities are evident during task performance, including impaired deactivation of the DMN and reduced activation of task-relevant regions. We investigated whether middle-aged type 2 diabetic patients show these brain activity patterns during encoding and recognition tasks. Compared with control participants, we observed both reduced 1) activation of the dorsolateral prefrontal cortex during encoding and 2) deactivation of the DMN during recognition in type 2 diabetic patients, despite normal cognition. During recognition, activation in several task-relevant regions, including the dorsolateral prefrontal cortex and DMN regions, was positively correlated with HbA1c and insulin resistance, suggesting that these important markers of glucose metabolism impact the brain’s response to a cognitive challenge. Plasma glucose ≥11 mmol/L was associated with impaired deactivation of the DMN, suggesting that acute hyperglycemia contributes to brain abnormalities. Since elderly type 2 diabetic patients often demonstrate cognitive impairments, it is possible that these task-induced brain activity patterns observed in middle age may signal impending cognitive decline.
The retrosplenial (RSP) and postrhinal (POR) cortices are heavily interconnected with medial temporal lobe structures involved in learning and memory. Previous studies indicate that RSP and POR are necessary for contextual fear conditioning, but it remains unclear whether these regions contribute individually or instead work together as a functional circuit to modulate learning and/or memory. In Experiment 1, learning-related neuronal activity was assessed in RSP from home-cage, shock-only, context-only or fear conditioned rats using real-time PCR and immunohistochemical methods to quantify immediate early gene expression. A significant increase in Arc (activity regulated cytoskeleton-associated protein) mRNA and Arc and c-Fos protein expression was detected in RSP from fear conditioned rats compared to all other groups. In Experiment 2, retrograde tracing combined with immunohistochemistry revealed that compared to controls, a significant proportion of cells projecting from RSP to POR were immunopositive for c-Fos in fear conditioned rats. These results demonstrate that neurons projecting from RSP to POR are indeed active during fear conditioning. In Experiment 3, a functional disconnection paradigm was used to further examine the interaction between RSP and POR during fear conditioning. Compared to controls, rats with unilateral lesions of RSP and POR on opposite sides of the brain exhibited impaired contextual fear memory whereas rats with unilateral lesions in the same hemisphere displayed intermediate levels of freezing compared to controls and rats with contralateral lesions. Collectively these results are the first to show that RSP and POR function as a cortical network necessary for contextual fear learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.