Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a “wait anaphase” signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier–mCherry and Ndc80–green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation.
The GTPase Ran has recently been shown to stimulate microtubule polymerization in mitotic extracts, but its mode of action is not understood. Here we show that the mitotic role of Ran is largely mediated by the nuclear transport factor importin beta. Importin beta inhibits spindle formation in vitro and in vivo and sequesters an aster promoting activity (APA) that consists of multiple, independent factors. One component of APA is the microtubule-associated protein NuMA. NuMA and other APA components are discharged from importin beta by RanGTP and induce spindle-like structures in the absence of centrosomes, chromatin, or Ran. We propose that RanGTP functions in mitosis as in interphase by locally releasing cargoes from transport factors. In mitosis, this promotes spindle assembly by organizing microtubules in the vicinity of chromosomes.
Summary Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-microtubule (kt-MT) attachments are commonplace but often corrected prior to anaphase [1, 2]. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK) [3-5], typically occurs near spindle poles [6]; albeit, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles [7], can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles [8, 9]. Hence, a conundrum: erroneous kt-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome mis-alignment and an increased incidence of erroneous kt-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated [10-12]. We propose that an AAK activity gradient contributes to correcting mal-oriented kt-MT attachments in the vicinity of spindle poles.
Recent high-resolution studies of kinetochore structure have transformed the way researchers think about this crucial macro-molecular complex, which is essential for ensuring chromosome segregation occurs faithfully during cell division. Kinetochores mediate the interaction between chromosomes and the plus-ends of dynamic spindle microtubules and control the timing of anaphase onset by regulating the spindle assembly checkpoint (SAC). There is much debate in the SAC research community as to whether mitotic cells sense only microtubule attachment at the kinetochore, or both attachment and tension, before committing to anaphase. In this Commentary, we present a brief history of the tension-versus-attachment debate, summarize recent advances in our understanding of kinetochore structure and focus on the implications of a phenomenon known as intrakinetochore stretch for SAC regulation. We also hypothesize how intrakinetochore stretch might impact SAC function by regulating both microtubule attachment stability and the localization and activity of checkpoint components at the kinetochore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.