Little is known of protein expression in Mycobacterium avium subsp. paratuberculosis and how this contributes to pathogenesis. In the present study, proteins from both membranes and cytosol were prepared from two strains of M. avium subsp. paratuberculosis, i.e., laboratory-adapted strain K-10 and a recent isolate, strain 187, obtained from a cow exhibiting clinical signs of Johne's disease. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cytosol and membrane proteins from K-10 and 187 showed marked differences in protein expression. Relative levels of protein expression from both M. avium subsp. paratuberculosis strains were measured by using amine-reactive isobaric tagging reagents (iTRAQ) and tandem mass spectroscopy. Protein identification and relative expression data were obtained for 874 membrane and cytosolic proteins from the M. avium subsp. paratuberculosis proteome. These data showed a number of significant differences in protein expression between strain K-10 and clinical isolate 187. Examples of proteins expressed at higher levels in clinical isolate 187 compared to strain K-10 are AtpC, RpoA, and several proteins involved in fatty acid biosynthesis. In contrast, proteins such as AhpC and several proteins involved in nitrogen metabolism were expressed at higher levels in strain K-10 compared to strain 187. These data may provide insights into the proteins whose expression is important in natural infection but are modified once M. avium subsp. paratuberculosis is adapted to laboratory cultivation. Results from these studies will provide tools for developing a better understanding of M. avium subsp. paratuberculosis infection in the host and offer potential as diagnostic reagents and vaccine candidates.
Specific antibodies, available in unlimited quantities, have not been produced against Mycobacterium avium subsp. paratuberculosis, the bacterium that causes Johne's disease (JD). To fill this gap in JD research, monoclonal antibodies (MAbs) against M. avium subsp. paratuberculosis were produced from BALB/c mice immunized with a whole-cell extract of M. avium subsp. paratuberculosis. A total of 10 hybridomas producing MAbs to proteins ranging from 25 to 85 kDa were obtained. All MAbs showed some degree of cross-reactivity when they were analyzed against a panel of whole-cell protein lysates comprising seven different mycobacterial species. The MAbs were characterized by several methods, which included isotype analysis, specificity analysis, epitope analysis, reactivity in immunoblot assays, and electron microscopy. The identities of the antigens that bound to two selected MAbs were determined by screening an M. avium subsp. paratuberculosis lambda phage expression library. This approach revealed that MAb 9G10 detects MAP1643 (isocitrate lyase) and that MAb 11G4 detects MAP3840 (a 70-kDa heat shock protein), two proteins present in high relative abundance in M. avium subsp. paratuberculosis. The epitopes for MAb 11G4 were mapped to the N-terminal half of MAP3840, whereas MAb 9G10 bound to the C-terminal half of MAP1643. Aptamers, nucleic acids that bind to specific protein sequences, against the hypothetical protein encoded by MAP0105c were also generated and tested for their binding to M. avium subsp. paratuberculosis as well as other mycobacteria. These detection reagents may be beneficial in many JD research applications.The genus Mycobacterium comprises a diverse group of animal and human pathogens as well as saprophytes, many of which are ubiquitous in the environment. Mycobacterium avium subsp. paratuberculosis is a member of the Mycobacterium avium complex (MAC) and an animal pathogen that is highlighted by the large financial burden that it places on the dairy industry due to Johne's disease (JD). Figures extrapolated from the 1996 NAHMS dairy survey suggest that the cost of this disease was over $200 million per year (25). The growing recognition of M. avium subsp. paratuberculosis infection in wildlife species is of considerable concern, since it may affect our ability to control or eradicate JD from domesticated animals (10, 11).Despite the research difficulties and economic consequences of JD, very few reports have described specific, antigen-based detection reagents for M. avium subsp. paratuberculosis. With the exception of a single study published 10 years ago (24), the scientific literature is silent on the subject of M. avium subsp. paratuberculosis monoclonal antibodies (MAbs) and their use in JD research. Very recently, single-chain antibodies were selected by cloning heavy and light chains from sheep with JD (6). This effort has resulted in two very promising recombinant antibodies; however, the M. avium subsp. paratuberculosis proteins that these antibodies react with remain unknown. The over...
The Mycobacterium avium subsp. paratuberculosis 35-kDa major membrane protein (MMP) encoded by MAP2121c is an important membrane antigen recognized in cattle with Johne's disease. In this study, purified recombinant MMP was used to produce two stable monoclonal antibodies, termed 8G2 and 13E1, which were characterized by immunoblotting, epitope mapping, and immunofluorescence microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.