Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants. By comparison with earlier estimates based on common variants, our model shows a clear genetic signal of accelerating population growth, suggesting that humanity harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease in contemporary populations may be heavily influenced by the distribution of rare variants.
RNA from pseudorabies virus (PRV)-infected cells was translated in a reticulocyte lysate with and without the addition of dog pancreas microsomes. Upon addition of the microsomes to the translation reaction, an additional prominent protein product was observed that was not present when microsomes were omitted. The gene coding for this processed protein and its lower-molecular-weight precursor was mapped within the small unique region of the genome by hybridization of mRNA to cloned fragments of PRV DNA and translation of the selected mRNAs. A fragment of the coding region of this gene was inserted into an open reading frame cloning vector to express part of this gene as a hybrid protein in Escherichia coli. This hybrid protein was injected into mice to raise an antiserum which was found to precipitate the glycoprotein which accumulates in the medium of PRV-infected cells. This allows us to conclude that the gene for the "excreted" glycoprotein (gX) maps to the small unique region of the genome, and that the precursor of this glycoprotein is readily processed by dog pancreas microsomes. The region of the PRV genome which codes for this glycoprotein was sequenced and found to include an open reading frame coding for 498 amino acids, flanked by sequences which contain features common to eucaryotic promoters and polyadenylation signals. The predicted protein sequence includes a hydrophobic sequence at the N-terminus which could be a signal sequence, and a hydrophobic sequence followed by a hydrophilic sequence at the C-terminus.
These data demonstrate age-related variations in breast cancer treatment in a multidisciplinary breast care unit. Lower complication rates and equivalent short-term outcomes in women who received nonstandard therapy suggest good clinical judgment may have played a role in these differences. Although age-related patient preferences and comorbidity are relevant, the age-related attitudes of caregivers must also be taken into account to fully explain these variations.
Phospholipid liposomes are synthetic mediators of "reverse" cholesterol transport from peripheral tissue to liver in vivo and can shrink atherosclerotic lesions in animals. Hepatic disposal of this cholesterol, however, has not been examined. We compared hepatic effects of large (approximately equal to 120-nm) and small (approximately equal to 35-nm) unilamellar vesicles (LUVs and SUVs), both of which mediate reverse cholesterol transport in vivo but were previously shown to be targeted to different cell types within the liver. On days 1, 3, and 5, rabbits were intravenously injected with 300 mg phosphatidylcholine (LUVs or SUVs) per kilogram body weight or with the equivalent volume of saline. After each injection, LUV- and SUV-injected animals showed large increases in plasma concentrations of unesterified cholesterol, indicating mobilization of tissue stores. After hepatic uptake of this cholesterol, however, SUV-treated animals developed persistently elevated plasma LDL concentrations, which by day 6 had increased to more than four times the values in saline-treated controls. In contrast, LUV-treated animals showed normal LDL levels. By RNase protection assay, SUVs suppressed hepatic LDL receptor mRNA at day 6 (to 61 +/- 4% of control, mean +/- SEM), whereas LUVs caused a statistically insignificant stimulation. Hepatic HMG-CoA reductase message was also significantly suppressed with SUV, but not LUV treatment, and hepatic 7 alpha-hydroxylase message showed a similar trend. These data on hepatic mRNA levels indicate that SUVs, but not LUVs, substantially perturbed liver cholesterol homeostasis. We conclude that LUVs and SUVs mobilize peripheral tissue cholesterol and deliver it to the liver, but to distinct metabolic pools that exert different regulatory effects. The effects of one of these artificial particles, SUVs, suggest that reverse cholesterol transport may not always be benign. In contrast, LUVs may be a suitable therapeutic agent, because they mobilize peripheral cholesterol to the liver without suppressing hepatic LDL receptor mRNA and without provoking a subsequent rise in plasma LDL levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.